亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new model for forecasting time series data distributed on a matrix-shaped spatial grid, using the historical spatio-temporal data together with auxiliary vector-valued time series data. We model the matrix time series as an auto-regressive process, where a future matrix is jointly predicted by the historical values of the matrix time series as well as an auxiliary vector time series. The matrix predictors are associated with row/column-specific autoregressive matrix coefficients that map the predictors to the future matrices via a bi-linear transformation. The vector predictors are mapped to matrices by taking mode product with a 3D coefficient tensor. Given the high dimensionality of the tensor coefficient and the underlying spatial structure of the data, we propose to estimate the tensor coefficient by estimating one functional coefficient for each covariate, with 2D input domain, from a Reproducing Kernel Hilbert Space. We jointly estimate the autoregressive matrix coefficients and the functional coefficients under a penalized maximum likelihood estimation framework, and couple it with an alternating minimization algorithm. Large sample asymptotics of the estimators are established and performances of the model are validated with extensive simulation studies and a real data application to forecast the global total electron content distributions.

相關內容

Analysis of high-dimensional data, where the number of covariates is larger than the sample size, is a topic of current interest. In such settings, an important goal is to estimate the signal level $\tau^2$ and noise level $\sigma^2$, i.e., to quantify how much variation in the response variable can be explained by the covariates, versus how much of the variation is left unexplained. This thesis considers the estimation of these quantities in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no responses $Y$. Our main research question is: how can one use the unlabeled data to better estimate $\tau^2$ and $\sigma^2$? We consider two frameworks: a linear regression model and a linear projection model in which linearity is not assumed. In the first framework, while linear regression is used, no sparsity assumptions on the coefficients are made. In the second framework, the linearity assumption is also relaxed and we aim to estimate the signal and noise levels defined by the linear projection. We first propose a naive estimator which is unbiased and consistent, under some assumptions, in both frameworks. We then show how the naive estimator can be improved by using zero-estimators, where a zero-estimator is a statistic arising from the unlabeled data, whose expected value is zero. In the first framework, we calculate the optimal zero-estimator improvement and discuss ways to approximate the optimal improvement. In the second framework, such optimality does no longer hold and we suggest two zero-estimators that improve the naive estimator although not necessarily optimally. Furthermore, we show that our approach reduces the variance for general initial estimators and we present an algorithm that potentially improves any initial estimator. Lastly, we consider four datasets and study the performance of our suggested methods.

Despite the progress in medical data collection the actual burden of SARS-CoV-2 remains unknown due to under-ascertainment of cases. This was apparent in the acute phase of the pandemic and the use of reported deaths has been pointed out as a more reliable source of information, likely less prone to under-reporting. Since daily deaths occur from past infections weighted by their probability of death, one may infer the total number of infections accounting for their age distribution, using the data on reported deaths. We adopt this framework and assume that the dynamics generating the total number of infections can be described by a continuous time transmission model expressed through a system of non-linear ordinary differential equations where the transmission rate is modelled as a diffusion process allowing to reveal both the effect of control strategies and the changes in individuals behavior. We develop this flexible Bayesian tool in Stan and study 3 pairs of European countries, estimating the time-varying reproduction number($R_t$) as well as the true cumulative number of infected individuals. As we estimate the true number of infections we offer a more accurate estimate of $R_t$. We also provide an estimate of the daily reporting ratio and discuss the effects of changes in mobility and testing on the inferred quantities.

Population-based structural health monitoring (PBSHM) aims to share valuable information among members of a population, such as normal- and damage-condition data, to improve inferences regarding the health states of the members. Even when the population is comprised of nominally-identical structures, benign variations among the members will exist as a result of slight differences in material properties, geometry, boundary conditions, or environmental effects (e.g., temperature changes). These discrepancies can affect modal properties and present as changes in the characteristics of the resonance peaks of the frequency response function (FRF). Many SHM strategies depend on monitoring the dynamic properties of structures, so benign variations can be challenging for the practical implementation of these systems. Another common challenge with vibration-based SHM is data loss, which may result from transmission issues, sensor failure, a sample-rate mismatch between sensors, and other causes. Missing data in the time domain will result in decreased resolution in the frequency domain, which can impair dynamic characterisation. The hierarchical Bayesian approach provides a useful modelling structure for PBSHM, because statistical distributions at the population and individual (or domain) level are learnt simultaneously to bolster statistical strength among the parameters. As a result, variance is reduced among the parameter estimates, particularly when data are limited. In this paper, combined probabilistic FRF models are developed for a small population of nominally-identical helicopter blades under varying temperature conditions, using a hierarchical Bayesian structure. These models address critical challenges in SHM, by accommodating benign variations that present as differences in the underlying dynamics, while also considering (and utilising), the similarities among the blades.

Efficiently pricing multi-asset options is a challenging problem in quantitative finance. When the characteristic function is available, Fourier-based methods are competitive compared to alternative techniques because the integrand in the frequency space often has a higher regularity than that in the physical space. However, when designing a numerical quadrature method for most Fourier pricing approaches, two key aspects affecting the numerical complexity should be carefully considered: (i) the choice of damping parameters that ensure integrability and control the regularity class of the integrand and (ii) the effective treatment of high dimensionality. We propose an efficient numerical method for pricing European multi-asset options based on two complementary ideas to address these challenges. First, we smooth the Fourier integrand via optimized choice of damping parameters based on a proposed optimization rule. Second, we employ sparsification and dimension-adaptivity techniques to accelerate the convergence of the quadrature in high dimensions. The extensive numerical study on basket and rainbow options under the multivariate geometric Brownian motion and some L\'evy models demonstrates the advantages of adaptivity and the damping rule on the numerical complexity of quadrature methods. Moreover, the approach achieves substantial computational gains compared to the Monte Carlo method.

Sensor devices have been increasingly used in engineering and health studies recently, and the captured multi-dimensional activity and vital sign signals can be studied in association with health outcomes to inform public health. The common approach is the scalar-on-function regression model, in which health outcomes are the scalar responses while high-dimensional sensor signals are the functional covariates, but how to effectively interpret results becomes difficult. In this study, we propose a new Functional Adaptive Double-Sparsity (FadDoS) estimator based on functional regularization of sparse group lasso with multiple functional predictors, which can achieve global sparsity via functional variable selection and local sparsity via zero-subinterval identification within coefficient functions. We prove that the FadDoS estimator converges at a bounded rate and satisfies the oracle property under mild conditions. Extensive simulation studies confirm the theoretical properties and exhibit excellent performances compared to existing approaches. Application to a Kinect sensor study that utilized an advanced motion sensing device tracking human multiple joint movements and conducted among community-dwelling elderly demonstrates how the FadDoS estimator can effectively characterize the detailed association between joint movements and physical health assessments. The proposed method is not only effective in Kinect sensor analysis but also applicable to broader fields, where multi-dimensional sensor signals are collected simultaneously, to expand the use of sensor devices in health studies and facilitate sensor data analysis.

Single index models provide an effective dimension reduction tool in regression, especially for high dimensional data, by projecting a general multivariate predictor onto a direction vector. We propose a novel single-index model for regression models where metric space-valued random object responses are coupled with multivariate Euclidean predictors. The responses in this regression model include complex, non-Euclidean data that lie in abstract metric spaces, including covariance matrices, graph Laplacians of networks, and univariate probability distribution functions. While Fr\'echet regression has proved useful for modeling the conditional mean of such random objects given multivariate Euclidean vectors, it does not provide for regression parameters such as slopes or intercepts, since the metric space-valued responses are not amenable to linear operations. As a consequence, distributional results for Fr\'echet regression have been elusive. We show here that for the case of multivariate Euclidean predictors, the parameters that define a single index and projection vector can be used to substitute for the inherent absence of parameters in Fr\'echet regression. Specifically, we derive the asymptotic distribution of suitable estimates of these parameters, which then can be utilized to test linear hypotheses for the parameters, subject to an identifiability condition. We demonstrate the finite sample performance of estimation and inference for the proposed single index Fr\'echet regression model through simulation studies. The method is illustrated for resting-state functional Magnetic Resonance Imaging (fMRI) data from the ADNI study.

Vector autoregressions (VARs) have an associated order $p$; conditional on observations at the preceding $p$ time points, the variable at time $t$ is conditionally independent of all the earlier history. Learning the order of the model is therefore vital for its characterisation and subsequent use in forecasting. It is common to assume that a VAR is stationary. This prevents the predictive variance of the process from increasing without bound as the forecast horizon increases and facilitates interpretation of the relationships between variables. A VAR is stable if and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive coefficient matrices to lie in the stationary region. Unfortunately, the geometry of the stationary region is very complicated which impedes specification of a prior. In this work, the autoregressive coefficients are mapped to a set of transformed partial autocorrelation matrices which are unconstrained, allowing for straightforward prior specification, routine computational inference, and meaningful interpretation of the magnitude of the elements in the matrix. The multiplicative gamma process is used to build a prior for the unconstrained matrices, which encourages increasing shrinkage of the partial autocorrelation parameters as the lag increases. Identifying the lag beyond which the partial autocorrelations become equal to zero then determines the order of the process. Posterior inference is performed using Hamiltonian Monte Carlo via Stan. A truncation criterion is used to determine whether a partial autocorrelation matrix has been effectively shrunk to zero. The value of the truncation threshold is motivated by classical theory on the sampling distribution of the partial autocorrelation function. The work is applied to neural activity data in order to investigate ultradian rhythms in the brain.

We consider the problem of answering connectivity queries on a real algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be in generic position, and being defined by some rational parametrizations. The query points are given by a zero-dimensional parametrization. We design an algorithm which counts the number of connected components of the real curve under study, and decides which query point lie in which connected component, in time log-linear in $N^6$, where $N$ is the maximum of the degrees and coefficient bit-sizes of the polynomials given as input. This matches the currently best-known bound for computing the topology of real plane curves. The main novelty of this algorithm is the avoidance of the computation of the complete topology of the curve.

Social distance games have been extensively studied as a coalition formation model where the utilities of agents in each coalition were captured using a utility function u that took into account distances in a given social network. In this paper, we consider a non-normalized score-based definition of social distance games where the utility function u_v depends on a generic scoring vector v, which may be customized to match the specifics of each individual application scenario. As our main technical contribution, we establish the tractability of computing a welfare-maximizing partitioning of the agents into coalitions on tree-like networks, for every score-based function u_v. We provide more efficient algorithms when dealing with specific choices of u_v or simpler networks, and also extend all of these results to computing coalitions that are Nash stable or individually rational. We view these results as a further strong indication of the usefulness of the proposed score-based utility function: even on very simple networks, the problem of computing a welfare-maximizing partitioning into coalitions remains open for the originally considered canonical function u.

Although Transformer-based methods have significantly improved state-of-the-art results for long-term series forecasting, they are not only computationally expensive but more importantly, are unable to capture the global view of time series (e.g. overall trend). To address these problems, we propose to combine Transformer with the seasonal-trend decomposition method, in which the decomposition method captures the global profile of time series while Transformers capture more detailed structures. To further enhance the performance of Transformer for long-term prediction, we exploit the fact that most time series tend to have a sparse representation in well-known basis such as Fourier transform, and develop a frequency enhanced Transformer. Besides being more effective, the proposed method, termed as Frequency Enhanced Decomposed Transformer ({\bf FEDformer}), is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by $14.8\%$ and $22.6\%$ for multivariate and univariate time series, respectively. the code will be released soon.

北京阿比特科技有限公司