Safety is one of the fundamental challenges in control theory. Recently, multi-step optimal control problems for discrete-time dynamical systems were formulated to enforce stability, while subject to input constraints as well as safety-critical requirements using discrete-time control barrier functions within a model predictive control (MPC) framework. Existing work usually focus on the feasibility or the safety for the optimization problem, and the majority of the existing work restrict the discussions to relative-degree one control barrier functions. Additionally, the real-time computation is challenging when a large horizon is considered in the MPC problem for relative-degree one or high-order control barrier functions. In this paper, we propose a framework that solves the safety-critical MPC problem in an iterative optimization, which is applicable for any relative-degree control barrier functions. In the proposed formulation, the nonlinear system dynamics as well as the safety constraints modeled as discrete-time high-order control barrier functions (DHOCBF) are linearized at each time step. Our formulation is generally valid for any control barrier function with an arbitrary relative-degree. The advantages of fast computational performance with safety guarantee are analyzed and validated with numerical results.
Linear Temporal Logic (LTL) is widely used to specify high-level objectives for system policies, and it is highly desirable for autonomous systems to learn the optimal policy with respect to such specifications. However, learning the optimal policy from LTL specifications is not trivial. We present a model-free Reinforcement Learning (RL) approach that efficiently learns an optimal policy for an unknown stochastic system, modelled using Markov Decision Processes (MDPs). We propose a novel and more general product MDP, reward structure and discounting mechanism that, when applied in conjunction with off-the-shelf model-free RL algorithms, efficiently learn the optimal policy that maximizes the probability of satisfying a given LTL specification with optimality guarantees. We also provide improved theoretical results on choosing the key parameters in RL to ensure optimality. To directly evaluate the learned policy, we adopt probabilistic model checker PRISM to compute the probability of the policy satisfying such specifications. Several experiments on various tabular MDP environments across different LTL tasks demonstrate the improved sample efficiency and optimal policy convergence.
Since their introduction in Abadie and Gardeazabal (2003), Synthetic Control (SC) methods have quickly become one of the leading methods for estimating causal effects in observational studies in settings with panel data. Formal discussions often motivate SC methods by the assumption that the potential outcomes were generated by a factor model. Here we study SC methods from a design-based perspective, assuming a model for the selection of the treated unit(s) and period(s). We show that the standard SC estimator is generally biased under random assignment. We propose a Modified Unbiased Synthetic Control (MUSC) estimator that guarantees unbiasedness under random assignment and derive its exact, randomization-based, finite-sample variance. We also propose an unbiased estimator for this variance. We document in settings with real data that under random assignment, SC-type estimators can have root mean-squared errors that are substantially lower than that of other common estimators. We show that such an improvement is weakly guaranteed if the treated period is similar to the other periods, for example, if the treated period was randomly selected. While our results only directly apply in settings where treatment is assigned randomly, we believe that they can complement model-based approaches even for observational studies.
In this paper, we address the problem of safe trajectory planning for autonomous search and exploration in constrained, cluttered environments. Guaranteeing safe (collision-free) trajectories is a challenging problem that has garnered significant due to its importance in the successful utilization of robots in search and exploration tasks. This work contributes a method that generates guaranteed safety-critical search trajectories in a cluttered environment. Our approach integrates safety-critical constraints using discrete control barrier functions (DCBFs) with ergodic trajectory optimization to enable safe exploration. Ergodic trajectory optimization plans continuous exploratory trajectories that guarantee complete coverage of a space. We demonstrate through simulated and experimental results on a drone that our approach is able to generate trajectories that enable safe and effective exploration. Furthermore, we show the efficacy of our approach for safe exploration using real-world single- and multi- drone platforms.
This paper studies the number of limit cycles that may bifurcate from an equilibrium of an autonomous system of differential equations. The system in question is assumed to be of dimension $n$, have a zero-Hopf equilibrium at the origin, and consist only of homogeneous terms of order $m$. Denote by $H_k(n,m)$ the maximum number of limit cycles of the system that can be detected by using the averaging method of order $k$. We prove that $H_1(n,m)\leq(m-1)\cdot m^{n-2}$ and $H_k(n,m)\leq(km)^{n-1}$ for generic $n\geq3$, $m\geq2$ and $k>1$. The exact numbers of $H_k(n,m)$ or tight bounds on the numbers are determined by computing the mixed volumes of some polynomial systems obtained from the averaged functions. Based on symbolic and algebraic computation, a general and algorithmic approach is proposed to derive sufficient conditions for a given differential system to have a prescribed number of limit cycles. The effectiveness of the proposed approach is illustrated by a family of third-order differential equations and by a four-dimensional hyperchaotic differential system.
This paper aims to construct an efficient and highly accurate numerical method to solve a class of parabolic integro-fractional differential equations, which is based on wavelets and $L2$-$1_\sigma$ scheme; specifically, the Haar wavelet decomposition is used for grid adaptation and efficient computations, while the high order $L2$-$1_\sigma$ scheme is taken into account to discretize the time-fractional operator. In particular, second-order discretizations are used to approximate the spatial derivatives to solve the one-dimensional problem. In contrast, a repeated quadrature rule based on trapezoidal approximation is employed to discretize the integral operator. On the other hand, we use the semi-discretization of the proposed two-dimensional model based on the $L2$-$1_\sigma$ scheme for the fractional operator and composite trapezoidal approximation for the integral part. Then, the spatial derivatives are approximated by using the two-dimensional Haar wavelet. Here, we investigated theoretically and verified numerically the behavior of the proposed higher-order numerical method. In particular, the stability and convergence analysis of the proposed higher-order method has been studied. The obtained results are compared with some existing techniques through several graphs and tables, and it is shown that the proposed higher-order methods have better accuracy and produce less error compared with the $L1$ scheme.
Parallel-in-time integration has been the focus of intensive research efforts over the past two decades due to the advent of massively parallel computer architectures and the scaling limits of purely spatial parallelization. Various iterative parallel-in-time (PinT) algorithms have been proposed, like Parareal, PFASST, MGRIT, and Space-Time Multi-Grid (STMG). These methods have been described using different notations, and the convergence estimates that are available are difficult to compare. We describe Parareal, PFASST, MGRIT and STMG for the Dahlquist model problem using a common notation and give precise convergence estimates using generating functions. This allows us, for the first time, to directly compare their convergence. We prove that all four methods eventually converge super-linearly, and also compare them numerically. The generating function framework provides further opportunities to explore and analyze existing and new methods.
This paper proposes an adaptive gravity compensation (AGC) control strategy for a cable-driven upper-limb exosuit intended to assist the wearer with lifting tasks. Unlike most model-based control techniques used for this human-robot interaction task, the proposed control design does not assume knowledge of the anthropometric parameters of the wearer's arm and the payload. Instead, the uncertainties in human arm parameters, such as mass, length, and payload, are estimated online using an indirect adaptive control law that compensates for the gravity moment about the elbow joint. Additionally, the AGC controller is agnostic to the desired joint trajectory followed by the human arm. For the purpose of controller design, the human arm is modeled using a 1-DOF manipulator model. Further, a cable-driven actuator model is proposed that maps the assistive elbow torque to the actuator torque. The performance of the proposed method is verified through a co-simulation, wherein the control input realized in MATLAB is applied to the human bio-mechanical model in OpenSim under varying payload conditions. Significant reductions in human effort in terms of human muscle torque and metabolic cost are observed with the proposed control strategy. Further, simulation results show that the performance of the AGC controller converges to that of the gravity compensation (GC) controller, demonstrating the efficacy of AGC-based online parameter learning.
Discrete Differential Equations (DDEs) are functional equations that relate polynomially a power series $F(t,u)$ in $t$ with polynomial coefficients in a "catalytic" variable $u$ and the specializations, say at $u=1$, of $F(t,u)$ and of some of its partial derivatives in $u$. DDEs occur frequently in combinatorics, especially in map enumeration. If a DDE is of fixed-point type then its solution $F(t,u)$ is unique, and a general result by Popescu (1986) implies that $F(t,u)$ is an algebraic power series. Constructive proofs of algebraicity for solutions of fixed-point type DDEs were proposed by Bousquet-M\'elou and Jehanne (2006). Bostan et. al (2022) initiated a systematic algorithmic study of such DDEs of order 1. We generalize this study to DDEs of arbitrary order. First, we propose nontrivial extensions of algorithms based on polynomial elimination and on the guess-and-prove paradigm. Second, we design two brand-new algorithms that exploit the special structure of the underlying polynomial systems. Last, but not least, we report on implementations that are able to solve highly challenging DDEs with a combinatorial origin.
The nascent field of Rate-Distortion-Perception (RDP) theory is seeing a surge of research interest due to the application of machine learning techniques in the area of lossy compression. The information RDP function characterizes the three-way trade-off between description rate, average distortion, and perceptual quality measured by discrepancy between probability distributions. However, computing RDP functions has been a challenge due to the introduction of the perceptual constraint, and existing research often resorts to data-driven methods. In this paper, we show that the information RDP function can be transformed into a Wasserstein Barycenter problem. The nonstrictly convexity brought by the perceptual constraint can be regularized by an entropy regularization term. We prove that the entropy regularized model converges to the original problem. Furthermore, we propose an alternating iteration method based on the Sinkhorn algorithm to numerically solve the regularized optimization problem. Experimental results demonstrate the efficiency and accuracy of the proposed algorithm.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.