Counting the independent sets of a graph is a classical #P-complete problem, even in the bipartite case. We give an exponential-time approximation scheme for this problem which is faster than the best known algorithm for the exact problem. The running time of our algorithm on general graphs with error tolerance $\varepsilon$ is at most $O(2^{0.2680n})$ times a polynomial in $1/\varepsilon$. On bipartite graphs, the exponential term in the running time is improved to $O(2^{0.2372n})$. Our methods combine techniques from exact exponential algorithms with techniques from approximate counting. Along the way we generalise (to the multivariate case) the FPTAS of Sinclair, Srivastava, \v{S}tefankovi\v{c} and Yin for approximating the hard-core partition function on graphs with bounded connective constant. Also, we obtain an FPTAS for counting independent sets on graphs with no vertices with degree at least 6 whose neighbours' degrees sum to 27 or more. By a result of Sly, there is no FPTAS that applies to all graphs with maximum degree 6 unless $\mbox{P}=\mbox{NP}$.
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an $n$-dimensional convex body within multiplicative error $\epsilon$ using $\tilde{O}(n^{3}+n^{2.5}/\epsilon)$ queries to a membership oracle and $\tilde{O}(n^{5}+n^{4.5}/\epsilon)$ additional arithmetic operations. For comparison, the best known classical algorithm uses $\tilde{O}(n^{4}+n^{3}/\epsilon^{2})$ queries and $\tilde{O}(n^{6}+n^{5}/\epsilon^{2})$ additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requires $\Omega(\sqrt n+1/\epsilon)$ quantum membership queries, which rules out the possibility of exponential quantum speedup in $n$ and shows optimality of our algorithm in $1/\epsilon$ up to poly-logarithmic factors.
To gain a better theoretical understanding of how evolutionary algorithms (EAs) cope with plateaus of constant fitness, we propose the $n$-dimensional Plateau$_k$ function as natural benchmark and analyze how different variants of the $(1 + 1)$ EA optimize it. The Plateau$_k$ function has a plateau of second-best fitness in a ball of radius $k$ around the optimum. As evolutionary algorithm, we regard the $(1 + 1)$ EA using an arbitrary unbiased mutation operator. Denoting by $\alpha$ the random number of bits flipped in an application of this operator and assuming that $\Pr[\alpha = 1]$ has at least some small sub-constant value, we show the surprising result that for all constant $k \ge 2$, the runtime $T$ follows a distribution close to the geometric one with success probability equal to the probability to flip between $1$ and $k$ bits divided by the size of the plateau. Consequently, the expected runtime is the inverse of this number, and thus only depends on the probability to flip between $1$ and $k$ bits, but not on other characteristics of the mutation operator. Our result also implies that the optimal mutation rate for standard bit mutation here is approximately $k/(en)$. Our main analysis tool is a combined analysis of the Markov chains on the search point space and on the Hamming level space, an approach that promises to be useful also for other plateau problems.
We overcome two major bottlenecks in the study of low rank approximation by assuming the low rank factors themselves are sparse. Specifically, (1) for low rank approximation with spectral norm error, we show how to improve the best known $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time to $\mathsf{nnz}(\mathbf A)/\sqrt{\varepsilon}$ running time plus low order terms depending on the sparsity of the low rank factors, and (2) for streaming algorithms for Frobenius norm error, we show how to bypass the known $\Omega(nk/\varepsilon)$ memory lower bound and obtain an $s k (\log n)/ \mathrm{poly}(\varepsilon)$ memory bound, where $s$ is the number of non-zeros of each low rank factor. Although this algorithm is inefficient, as it must be under standard complexity theoretic assumptions, we also present polynomial time algorithms using $\mathrm{poly}(s,k,\log n,\varepsilon^{-1})$ memory that output rank $k$ approximations supported on a $O(sk/\varepsilon)\times O(sk/\varepsilon)$ submatrix. Both the prior $\mathsf{nnz}(\mathbf A) k / \sqrt{\varepsilon}$ running time and the $nk/\varepsilon$ memory for these problems were long-standing barriers; our results give a natural way of overcoming them assuming sparsity of the low rank factors.
This paper presents new \emph{variance-aware} confidence sets for linear bandits and linear mixture Markov Decision Processes (MDPs). With the new confidence sets, we obtain the follow regret bounds: For linear bandits, we obtain an $\tilde{O}(poly(d)\sqrt{1 + \sum_{k=1}^{K}\sigma_k^2})$ data-dependent regret bound, where $d$ is the feature dimension, $K$ is the number of rounds, and $\sigma_k^2$ is the \emph{unknown} variance of the reward at the $k$-th round. This is the first regret bound that only scales with the variance and the dimension but \emph{no explicit polynomial dependency on $K$}. When variances are small, this bound can be significantly smaller than the $\tilde{\Theta}\left(d\sqrt{K}\right)$ worst-case regret bound. For linear mixture MDPs, we obtain an $\tilde{O}(poly(d, \log H)\sqrt{K})$ regret bound, where $d$ is the number of base models, $K$ is the number of episodes, and $H$ is the planning horizon. This is the first regret bound that only scales \emph{logarithmically} with $H$ in the reinforcement learning with linear function approximation setting, thus \emph{exponentially improving} existing results, and resolving an open problem in \citep{zhou2020nearly}. We develop three technical ideas that may be of independent interest: 1) applications of the peeling technique to both the input norm and the variance magnitude, 2) a recursion-based estimator for the variance, and 3) a new convex potential lemma that generalizes the seminal elliptical potential lemma.
We consider the problem of approximating the arboricity of a graph $G= (V,E)$, which we denote by $\mathsf{arb}(G)$, in sublinear time, where the arboricity of a graph is the minimal number of forests required to cover its edges. An algorithm for this problem may perform degree and neighbor queries, and is allowed a small error probability. We design an algorithm that outputs an estimate $\hat{\alpha}$, such that with probability $1-1/\textrm{poly}(n)$, $\mathsf{arb}(G)/c\log^2 n \leq \hat{\alpha} \leq \mathsf{arb}(G)$, where $n=|V|$ and $c$ is a constant. The expected query complexity and running time of the algorithm are $O(n/\mathsf{arb}(G))\cdot \textrm{poly}(\log n)$, and this upper bound also holds with high probability. %($\widetilde{O}(\cdot)$ is used to suppress $\textrm{poly}(\log n)$ dependencies). This bound is optimal for such an approximation up to a $\textrm{poly}(\log n)$ factor.
This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to testing by betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform existing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.
Graphs (networks) are an important tool to model data in different domains. Real-world graphs are usually directed, where the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network $G$ and a vertex $r \in V(G)$, we propose an exact algorithm to compute betweenness score of $r$. Our algorithm pre-computes a set $\mathcal{RV}(r)$, which is used to prune a huge amount of computations that do not contribute to the betweenness score of $r$. Time complexity of our algorithm depends on $|\mathcal{RV}(r)|$ and it is respectively $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|)$ and $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|+|\mathcal{RV}(r)|\cdot|V(G)|\log |V(G)|)$ for unweighted graphs and weighted graphs with positive weights. $|\mathcal{RV}(r)|$ is bounded from above by $|V(G)|-1$ and in most cases, it is a small constant. Then, for the cases where $\mathcal{RV}(r)$ is large, we present a simple randomized algorithm that samples from $\mathcal{RV}(r)$ and performs computations for only the sampled elements. We show that this algorithm provides an $(\epsilon,\delta)$-approximation to the betweenness score of $r$. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that for estimating betweenness score of a single vertex, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also reveal that our algorithm improves the existing algorithms when someone is interested in computing betweenness values of the vertices in a set whose cardinality is very small.
We consider \emph{Gibbs distributions}, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The \emph{partition function} is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. We develop a key subroutine to estimate the partition function $Z$. Specifically, it generates a data structure to estimate $Z(\beta)$ for \emph{all} values $\beta$, without further samples. Constructing the data structure requires $O(\frac{q \log n}{\varepsilon^2})$ samples for general Gibbs distributions and $O(\frac{n^2 \log n}{\varepsilon^2} + n \log q)$ samples for integer-valued distributions. This improves over a prior algorithm of Huber (2015) which computes a single point estimate $Z(\beta_\max)$ using $O( q \log n( \log q + \log \log n + \varepsilon^{-2}))$ samples. We show matching lower bounds, demonstrating that this complexity is optimal as a function of $n$ and $q$ up to logarithmic terms.
A general quantum circuit can be simulated classically in exponential time. If it has a planar layout, then a tensor-network contraction algorithm due to Markov and Shi has a runtime exponential in the square root of its size, or more generally exponential in the treewidth of the underlying graph. Separately, Gottesman and Knill showed that if all gates are restricted to be Clifford, then there is a polynomial time simulation. We combine these two ideas and show that treewidth and planarity can be exploited to improve Clifford circuit simulation. Our main result is a classical algorithm with runtime scaling asymptotically as $n^{\omega/2}<n^{1.19}$ which samples from the output distribution obtained by measuring all $n$ qubits of a planar graph state in given Pauli bases. Here $\omega$ is the matrix multiplication exponent. We also provide a classical algorithm with the same asymptotic runtime which samples from the output distribution of any constant-depth Clifford circuit in a planar geometry. Our work improves known classical algorithms with cubic runtime. A key ingredient is a mapping which, given a tree decomposition of some graph $G$, produces a Clifford circuit with a structure that mirrors the tree decomposition and which emulates measurement of the corresponding graph state. We provide a classical simulation of this circuit with the runtime stated above for planar graphs and otherwise $nt^{\omega-1}$ where $t$ is the width of the tree decomposition. Our algorithm incorporates two subroutines which may be of independent interest. The first is a matrix-multiplication-time version of the Gottesman-Knill simulation of multi-qubit measurement on stabilizer states. The second is a new classical algorithm for solving symmetric linear systems over $\mathbb{F}_2$ in a planar geometry, extending previous works which only applied to non-singular linear systems in the analogous setting.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.