亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail safety-critical traffic scenarios. However, traditional methods for generating such scenarios often fall short in terms of controllability and realism; they also neglect the dynamics of agent interactions. To address these limitations, we introduce SAFE-SIM, a novel diffusion-based controllable closed-loop safety-critical simulation framework. Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process of diffusion models, which allows an adversarial agent to challenge a planner with plausible maneuvers while all agents in the scene exhibit reactive and realistic behaviors. Furthermore, we propose novel guidance objectives and a partial diffusion process that enables users to control key aspects of the scenarios, such as the collision type and aggressiveness of the adversarial agent, while maintaining the realism of the behavior. We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability. These findings affirm that diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader autonomous driving landscape. Project website: //safe-sim.github.io/.

相關內容

In autonomous driving, accurate motion prediction is essential for safe and efficient motion planning. To ensure safety, planners must rely on reliable uncertainty information about the predicted future behavior of surrounding agents, yet this aspect has received limited attention. This paper addresses the so-far neglected problem of uncertainty modeling in trajectory prediction. We adopt a holistic approach that focuses on uncertainty quantification, decomposition, and the influence of model composition. Our method is based on a theoretically grounded information-theoretic approach to measure uncertainty, allowing us to decompose total uncertainty into its aleatoric and epistemic components. We conduct extensive experiments on the nuScenes dataset to assess how different model architectures and configurations affect uncertainty quantification and model robustness.

The emergence of multi-agent reinforcement learning (MARL) is significantly transforming various fields like autonomous vehicle networks. However, real-world multi-agent systems typically contain multiple roles, and the scale of these systems dynamically fluctuates. Consequently, in order to achieve zero-shot scalable collaboration, it is essential that strategies for different roles can be updated flexibly according to the scales, which is still a challenge for current MARL frameworks. To address this, we propose a novel MARL framework named Scalable and Heterogeneous Proximal Policy Optimization (SHPPO), integrating heterogeneity into parameter-shared PPO-based MARL networks. We first leverage a latent network to learn strategy patterns for each agent adaptively. Second, we introduce a heterogeneous layer to be inserted into decision-making networks, whose parameters are specifically generated by the learned latent variables. Our approach is scalable as all the parameters are shared except for the heterogeneous layer, and gains both inter-individual and temporal heterogeneity, allowing SHPPO to adapt effectively to varying scales. SHPPO exhibits superior performance in classic MARL environments like Starcraft Multi-Agent Challenge (SMAC) and Google Research Football (GRF), showcasing enhanced zero-shot scalability, and offering insights into the learned latent variables' impact on team performance by visualization.

Atmospheric turbulence in long-range imaging significantly degrades the quality and fidelity of captured scenes due to random variations in both spatial and temporal dimensions. These distortions present a formidable challenge across various applications, from surveillance to astronomy, necessitating robust mitigation strategies. While model-based approaches achieve good results, they are very slow. Deep learning approaches show promise in image and video restoration but have struggled to address these spatiotemporal variant distortions effectively. This paper proposes a new framework that combines geometric restoration with an enhancement module. Random perturbations and geometric distortion are removed using a pyramid architecture with deformable 3D convolutions, resulting in aligned frames. These frames are then used to reconstruct a sharp, clear image via a multi-scale architecture of 3D Swin Transformers. The proposed framework demonstrates superior performance over the state of the art for both synthetic and real atmospheric turbulence effects, with reasonable speed and model size.

Crack segmentation is crucial in civil engineering, particularly for assessing pavement integrity and ensuring the durability of infrastructure. While deep learning has advanced RGB-based segmentation, performance degrades under adverse conditions like low illumination or motion blur. Thermal imaging offers complementary information by capturing emitted radiation, improving crack detection in challenging environments. Combining RGB and thermal images (RGB-T) for crack segmentation shows promise in complex real-world conditions, such as adverse weather, yet research in this area remains limited. Current RGB-T segmentation methods often fail to fully exploit the complementary relationships between modalities at various levels of interaction. To address this, we propose IRFusionFormer, a novel model for crack segmentation that effectively integrates RGB and thermal data. Our Efficient RGB-T Cross Fusion Module captures multi-scale relationships and long-range dependencies between modalities without significant computational overhead. Additionally, we introduce the Interaction-Hybrid-Branch-Supervision framework, which enhances interaction between modalities by distributing fused features across branches with joint supervision. To maintain the topological structure of cracks, we introduce a novel topology-based loss function that preserves connectivity during training. Our method achieves state-of-the-art performance, with a Dice score of 90.01% and an IoU of 81.83%, significantly improving robustness and accuracy in varying environmental conditions. These advancements address key challenges in pavement crack segmentation, offering a more reliable and efficient solution. For access to the codes, data, and models from this study, visit //github.com/sheauhuu/IRFusionFormer

Achieving level-5 driving automation in autonomous vehicles necessitates a robust semantic visual perception system capable of parsing data from different sensors across diverse conditions. However, existing semantic perception datasets often lack important non-camera modalities typically used in autonomous vehicles, or they do not exploit such modalities to aid and improve semantic annotations in challenging conditions. To address this, we introduce MUSES, the MUlti-SEnsor Semantic perception dataset for driving in adverse conditions under increased uncertainty. MUSES includes synchronized multimodal recordings with 2D panoptic annotations for 2500 images captured under diverse weather and illumination. The dataset integrates a frame camera, a lidar, a radar, an event camera, and an IMU/GNSS sensor. Our new two-stage panoptic annotation protocol captures both class-level and instance-level uncertainty in the ground truth and enables the novel task of uncertainty-aware panoptic segmentation we introduce, along with standard semantic and panoptic segmentation. MUSES proves both effective for training and challenging for evaluating models under diverse visual conditions, and it opens new avenues for research in multimodal and uncertainty-aware dense semantic perception. Our dataset and benchmark are publicly available at //muses.vision.ee.ethz.ch.

Understanding and predicting pedestrian crossing behavioral intention is crucial for autonomous vehicles driving safety. Nonetheless, challenges emerge when using promising images or environmental context masks to extract various factors for time-series network modeling, causing pre-processing errors or a loss in efficiency. Typically, pedestrian positions captured by onboard cameras are often distorted and do not accurately reflect their actual movements. To address these issues, GTransPDM -- a Graph-embedded Transformer with a Position Decoupling Module -- was developed for pedestrian crossing intention prediction by leveraging multi-modal features. First, a positional decoupling module was proposed to decompose the pedestrian lateral movement and simulate depth variations in the image view. Then, a graph-embedded Transformer was designed to capture the spatial-temporal dynamics of human pose skeletons, integrating essential factors such as position, skeleton, and ego-vehicle motion. Experimental results indicate that the proposed method achieves 92% accuracy on the PIE dataset and 87% accuracy on the JAAD dataset, with a processing speed of 0.05ms. It outperforms the state-of-the-art in comparison.

Accurate dynamic modeling is critical for autonomous racing vehicles, especially during high-speed and agile maneuvers where precise motion prediction is essential for safety. Traditional parameter estimation methods face limitations such as reliance on initial guesses, labor-intensive fitting procedures, and complex testing setups. On the other hand, purely data-driven machine learning methods struggle to capture inherent physical constraints and typically require large datasets for optimal performance. To address these challenges, this paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs), combining physics-based modeling with data-driven techniques. FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods such as the Deep Pacejka Model (DPM) and outperforming the original DDM. Furthermore, an Extended Kalman Filter (EKF) is embedded within FTHD (EKF-FTHD) to effectively manage noisy real-world data, ensuring accurate denoising while preserving the vehicle's essential physical characteristics. The proposed FTHD framework is validated through scaled simulations using the BayesRace Physics-based Simulator and full-scale real-world experiments from the Indy Autonomous Challenge. Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models. EKF-FTHD enhances robustness by denoising real-world data while maintaining physical insights, representing a notable advancement in vehicle dynamics modeling for high-speed autonomous racing.

Current automatic speech recognition systems struggle with modeling long speech sequences due to high quadratic complexity of Transformer-based models. Selective state space models such as Mamba has performed well on long-sequence modeling in natural language processing and computer vision tasks. However, research endeavors in speech technology tasks has been under-explored. We propose Speech-Mamba, which incorporates selective state space modeling in Transformer neural architectures. Long sequence representations with selective state space models in Speech-Mamba is complemented with lower-level representations from Transformer-based modeling. Speech-mamba achieves better capacity to model long-range dependencies, as it scales near-linearly with sequence length.

Understanding and modeling complex dynamic systems is crucial for enhancing vehicle performance and safety, especially in the context of autonomous driving. Recently, popular methods such as Koopman operators and their approximators, known as Extended Dynamic Mode Decomposition (EDMD), have emerged for their effectiveness in transforming strongly nonlinear system behavior into linear representations. This allows them to be integrated with conventional linear controllers. To achieve this, Singular Value Decomposition (SVD), specifically truncated SVD, is employed to approximate Koopman operators from extensive datasets efficiently. This study evaluates different basis functions used in EDMD and ranks for truncated SVD for representing lane change behavior models, aiming to balance computational efficiency with information loss. The findings, however, suggest that the technique of truncated SVD does not necessarily achieve substantial reductions in computational training time and results in significant information loss.

Uncertainties in dynamic road environments pose significant challenges for behavior and trajectory planning in autonomous driving. This paper introduces BoT-Drive, a planning algorithm that addresses uncertainties at both behavior and trajectory levels within a Partially Observable Markov Decision Process (POMDP) framework. BoT-Drive employs driver models to characterize unknown behavioral intentions and utilizes their model parameters to infer hidden driving styles. By also treating driver models as decision-making actions for the autonomous vehicle, BoT-Drive effectively tackles the exponential complexity inherent in POMDPs. To enhance safety and robustness, the planner further applies importance sampling to refine the driving trajectory conditioned on the planned high-level behavior. Evaluation on real-world data shows that BoT-Drive consistently outperforms both existing planning methods and learning-based methods in regular and complex urban driving scenes, demonstrating significant improvements in driving safety and reliability.

北京阿比特科技有限公司