亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The new variant of measurement-device-independent quantum key distribution (MDI-QKD), called asynchronous MDI-QKD or mode-pairing MDI-QKD, offers similar repeater-like rate-loss scaling but has the advantage of simple technology implementation by exploiting an innovative post-measurement pairing technique. We herein present an evaluation of the practical aspects of decoy-state asynchronous MDI-QKD. To determine its effectiveness, we analyze the optimal method of decoy-state calculation and examine the impact of asymmetrical channels and multi-user networks. Our simulations show that, under realistic conditions, aynchronous MDI-QKD can furnish the highest key rate with MDI security as compared to other QKD protocols over distances ranging from 50 km to 480 km. At fiber distances of 50 km and 100 km, the key rates attain 6.02 Mbps and 2.29 Mbps respectively, which are sufficient to facilitate real-time one-time-pad video encryption. Our findings indicate that experimental implementation of asynchronous MDI-QKD in intercity networks can be both practical and efficient.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會議。 Publisher:IFIP。 SIT:

We study how ambient energy harvesting may be used as an attack vector in the battery-less Internet of Things (IoT). Battery-less IoT devices rely on ambient energy harvesting and are employed in a multitude of applications, including safety-critical ones such as biomedical implants. Due to scarce energy intakes and limited energy buffers, their executions become intermittent, alternating periods of active operation with periods of recharging energy buffers. Through an independent exploratory study and a follow-up systematic analysis, we demonstrate that by exerting limited control on ambient energy one can create situations of livelock, denial of service, and priority inversion, without physical device access. We call these situations energy attacks. Using concepts of approximate intermittent computing and machine learning, we design a technique that can detect energy attacks with 92%+ accuracy, that is, up to 37% better than the baselines, and with up to one fifth of their energy overhead. Crucially, by design, our technique does not cause any additional energy failure compared to the regular intermittent processing. We conclude with directions to inspire defense techniques and a discussion on the feasibility of energy attacks.

Multi-core neuromorphic systems typically use on-chip routers to transmit spikes among cores. These routers require significant memory resources and consume a large part of the overall system's energy budget. A promising alternative approach to using standard CMOS and SRAM-based routers is to exploit the features of memristive crossbar arrays and use them as programmable switch-matrices that route spikes. However, the scaling of these crossbar arrays presents physical challenges, such as `IR drop' on the metal lines due to the parasitic resistance, and leakage current accumulation on multiple active `off' memristors. While reliability challenges of this type have been extensively studied in synchronous systems for compute-in-memory matrix-vector multiplication (MVM) accelerators and storage class memory, little effort has been devoted so far to characterizing the scaling limits of memristor-based crossbar routers. In this paper, we study the challenges of memristive crossbar arrays, when used as routing channels to transmit spikes in asynchronous Spiking Neural Network (SNN) hardware. We validate our analytical findings with experimental results obtained from a 4K-ReRAM chip which demonstrate its functionality as a routing crossbar. We determine the functionality bounds on the routing due to the IR drop and leak problem, based both on experimental measurements, modeling and circuit simulations in a 22nm FDSOI technology. This work highlights the constraint of this approach and provides useful guidelines for engineering memristor properties in memristive crossbar routers for building multi-core asynchronous neuromorphic systems.

Edge computing is projected to become the dominant form of cloud computing in the future because of the significant advantages it brings to both users (less latency, higher throughput) and telecom operators (less Internet traffic, more local management). However, to fully unlock its potential at scale, system designers and automated optimization systems alike will have to monitor closely the dynamics of both processing and communication facilities. Especially the latter is often neglected in current systems since network performance in cloud computing plays only a minor role. In this paper, we propose the architecture of MECPerf, which is a solution to collect network measurements in a live edge computing domain, to be collected for offline provisioning analysis and simulations, or to be provided in real-time for on-line system optimization. MECPerf has been validated in a realistic testbed funded by the European Commission (Fed4Fire+), and we describe here a summary of the results, which are fully available as open data and through a Python library to expedite their utilization. This is demonstrated via a use case involving the optimization of a system parameter for migrating clients in a federated edge computing system adopting the GSMA platform operator concept.

Topological data analysis (TDA) has emerged as a powerful tool for extracting meaningful insights from complex data. TDA enhances the analysis of objects by embedding them into a simplicial complex and extracting useful global properties such as the Betti numbers, i.e. the number of multidimensional holes, which can be used to define kernel methods that are easily integrated with existing machine-learning algorithms. These kernel methods have found broad applications, as they rely on powerful mathematical frameworks which provide theoretical guarantees on their performance. However, the computation of higher-dimensional Betti numbers can be prohibitively expensive on classical hardware, while quantum algorithms can approximate them in polynomial time in the instance size. In this work, we propose a quantum approach to defining topological kernels, which is based on constructing Betti curves, i.e. topological fingerprint of filtrations with increasing order. We exhibit a working prototype of our approach implemented on a noiseless simulator and show its robustness by means of some empirical results suggesting that topological approaches may offer an advantage in quantum machine learning.

Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks.

Adversarial examples derived from deliberately crafted perturbations on visual inputs can easily harm decision process of deep neural networks. To prevent potential threats, various adversarial training-based defense methods have grown rapidly and become a de facto standard approach for robustness. Despite recent competitive achievements, we observe that adversarial vulnerability varies across targets and certain vulnerabilities remain prevalent. Intriguingly, such peculiar phenomenon cannot be relieved even with deeper architectures and advanced defense methods. To address this issue, in this paper, we introduce a causal approach called Adversarial Double Machine Learning (ADML), which allows us to quantify the degree of adversarial vulnerability for network predictions and capture the effect of treatments on outcome of interests. ADML can directly estimate causal parameter of adversarial perturbations per se and mitigate negative effects that can potentially damage robustness, bridging a causal perspective into the adversarial vulnerability. Through extensive experiments on various CNN and Transformer architectures, we corroborate that ADML improves adversarial robustness with large margins and relieve the empirical observation.

Density-functional theory (DFT) has revolutionized computer simulations in chemistry and material science. A faithful implementation of the theory requires self-consistent calculations. However, this effort involves repeatedly diagonalizing the Hamiltonian, for which a classical algorithm typically requires a computational complexity that scales cubically with respect to the number of electrons. This limits DFT's applicability to large-scale problems with complex chemical environments and microstructures. This article presents a quantum algorithm that has a linear scaling with respect to the number of atoms, which is much smaller than the number of electrons. Our algorithm leverages the quantum singular value transformation (QSVT) to generate a quantum circuit to encode the density-matrix, and an estimation method for computing the output electron density. In addition, we present a randomized block coordinate fixed-point method to accelerate the self-consistent field calculations by reducing the number of components of the electron density that needs to be estimated. The proposed framework is accompanied by a rigorous error analysis that quantifies the function approximation error, the statistical fluctuation, and the iteration complexity. In particular, the analysis of our self-consistent iterations takes into account the measurement noise from the quantum circuit. These advancements offer a promising avenue for tackling large-scale DFT problems, enabling simulations of complex systems that were previously computationally infeasible.

The advent of a new breed of enhanced multimedia services has put network operators into a position where they must support innovative services while ensuring both end-to-end Quality of Service requirements and profitability. Recently, Network Function Virtualization (NFV) has been touted as a cost-effective underlying technology in 5G networks to efficiently provision novel services. These NFV-based services have been increasingly associated with multi-domain networks. However, several orchestration issues, linked to cross-domain interactions and emphasized by the heterogeneity of underlying technologies and administrative authorities, present an important challenge. In this paper, we tackle the cross-domain interaction issue by proposing an intelligent and profitable auction-based approach to allow inter-domains resource allocation.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

北京阿比特科技有限公司