亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-core neuromorphic systems typically use on-chip routers to transmit spikes among cores. These routers require significant memory resources and consume a large part of the overall system's energy budget. A promising alternative approach to using standard CMOS and SRAM-based routers is to exploit the features of memristive crossbar arrays and use them as programmable switch-matrices that route spikes. However, the scaling of these crossbar arrays presents physical challenges, such as `IR drop' on the metal lines due to the parasitic resistance, and leakage current accumulation on multiple active `off' memristors. While reliability challenges of this type have been extensively studied in synchronous systems for compute-in-memory matrix-vector multiplication (MVM) accelerators and storage class memory, little effort has been devoted so far to characterizing the scaling limits of memristor-based crossbar routers. In this paper, we study the challenges of memristive crossbar arrays, when used as routing channels to transmit spikes in asynchronous Spiking Neural Network (SNN) hardware. We validate our analytical findings with experimental results obtained from a 4K-ReRAM chip which demonstrate its functionality as a routing crossbar. We determine the functionality bounds on the routing due to the IR drop and leak problem, based both on experimental measurements, modeling and circuit simulations in a 22nm FDSOI technology. This work highlights the constraint of this approach and provides useful guidelines for engineering memristor properties in memristive crossbar routers for building multi-core asynchronous neuromorphic systems.

相關內容

How do sequence models represent their decision-making process? Prior work suggests that Othello-playing neural network learned nonlinear models of the board state (Li et al., 2023). In this work, we provide evidence of a closely related linear representation of the board. In particular, we show that probing for "my colour" vs. "opponent's colour" may be a simple yet powerful way to interpret the model's internal state. This precise understanding of the internal representations allows us to control the model's behaviour with simple vector arithmetic. Linear representations enable significant interpretability progress, which we demonstrate with further exploration of how the world model is computed.

Adaptive interfaces can help users perform sequential decision-making tasks like robotic teleoperation given noisy, high-dimensional command signals (e.g., from a brain-computer interface). Recent advances in human-in-the-loop machine learning enable such systems to improve by interacting with users, but tend to be limited by the amount of data that they can collect from individual users in practice. In this paper, we propose a reinforcement learning algorithm to address this by training an interface to map raw command signals to actions using a combination of offline pre-training and online fine-tuning. To address the challenges posed by noisy command signals and sparse rewards, we develop a novel method for representing and inferring the user's long-term intent for a given trajectory. We primarily evaluate our method's ability to assist users who can only communicate through noisy, high-dimensional input channels through a user study in which 12 participants performed a simulated navigation task by using their eye gaze to modulate a 128-dimensional command signal from their webcam. The results show that our method enables successful goal navigation more often than a baseline directional interface, by learning to denoise user commands signals and provide shared autonomy assistance. We further evaluate on a simulated Sawyer pushing task with eye gaze control, and the Lunar Lander game with simulated user commands, and find that our method improves over baseline interfaces in these domains as well. Extensive ablation experiments with simulated user commands empirically motivate each component of our method.

A key challenge to ensuring the rapid transition of robotic systems from the industrial sector to more ubiquitous applications is the development of algorithms that can guarantee safe operation while in close proximity to humans. Motion planning and control methods, for instance, must be able to certify safety while operating in real-time in arbitrary environments and in the presence of model uncertainty. This paper proposes Wrench Analysis for Inertial Transport using Reachability (WAITR), a certifiably safe motion planning and control framework for serial link manipulators that manipulate unsecured objects in arbitrary environments. WAITR uses reachability analysis to construct over-approximations of the contact wrench applied to unsecured objects, which captures uncertainty in the manipulator dynamics, the object dynamics, and contact parameters such as the coefficient of friction. An optimization problem formulation is presented that can be solved in real-time to generate provably-safe motions for manipulating the unsecured objects. This paper illustrates that WAITR outperforms state of the art methods in a variety of simulation experiments and demonstrates its performance in the real-world.

IoT systems complexity and susceptibility to failures pose significant challenges in ensuring their reliable operation Failures can be internally generated or caused by external factors impacting both the systems correctness and its surrounding environment To investigate these complexities various modeling approaches have been proposed to raise the level of abstraction facilitating automation and analysis FailureLogic Analysis FLA is a technique that helps predict potential failure scenarios by defining how a components failure logic behaves and spreads throughout the system However manually specifying FLA rules can be arduous and errorprone leading to incomplete or inaccurate specifications In this paper we propose adopting testing methodologies to improve the completeness and correctness of these rules How failures may propagate within an IoT system can be observed by systematically injecting failures while running test cases to collect evidence useful to add complete and refine FLA rules

Neural based approaches to automatic evaluation of subjective responses have shown superior performance and efficiency compared to traditional rule-based and feature engineering oriented solutions. However, it remains unclear whether the suggested neural solutions are sufficient replacements of human raters as we find recent works do not properly account for rubric items that are essential for automated essay scoring during model training and validation. In this paper, we propose a series of data augmentation operations that train and test an automated scoring model to learn features and functions overlooked by previous works while still achieving state-of-the-art performance in the Automated Student Assessment Prize dataset.

This work addresses the challenge of developing a localization system for an uncrewed ground vehicle (UGV) operating autonomously in unstructured outdoor Global Navigation Satellite System (GNSS)-denied environments. The goal is to enable accurate mapping and long-range navigation with practical applications in domains such as autonomous construction, military engineering missions, and exploration of non-Earth planets. The proposed system - Terrain-Referenced Assured Engineer Localization System (TRAELS) - integrates pose estimates produced by two complementary terrain referenced navigation (TRN) methods with wheel odometry and inertial measurement unit (IMU) measurements using an Extended Kalman Filter (EKF). Unlike simultaneous localization and mapping (SLAM) systems that require loop closures, the described approach maintains accuracy over long distances and one-way missions without the need to revisit previous positions. Evaluation of TRAELS is performed across a range of environments. In regions where a combination of distinctive geometric and ground surface features are present, the developed TRN methods are leveraged by TRAELS to consistently achieve an absolute trajectory error of less than 3.0 m. The approach is also shown to be capable of recovering from large accumulated drift when traversing feature-sparse areas, which is essential in ensuring robust performance of the system across a wide variety of challenging GNSS-denied environments. Overall, the effectiveness of the system in providing precise localization and mapping capabilities in challenging GNSS-denied environments is demonstrated and an analysis is performed leading to insights for improving TRN approaches for UGVs.

Inspired by the vertebrate branch of the animal kingdom, articulated soft robots are robotic systems embedding elastic elements into a classic rigid (skeleton-like) structure. Leveraging on their bodies elasticity, soft robots promise to push their limits far beyond the barriers that affect their rigid counterparts. However, existing control strategies aiming at achieving this goal are either tailored on specific examples, or rely on model cancellations -- thus defeating the purpose of introducing elasticity in the first place. In a series of recent works, we proposed to implement efficient oscillatory motions in robots subject to a potential field, aimed at solving these issues. A main component of this theory are Eigenmanifolds, that we defined as nonlinear continuations of the classic linear eigenspaces. When the soft robot is initialized on one of these manifolds, it evolves autonomously while presenting regular -- and thus practically useful -- evolutions, called normal modes. In addition to that, we proposed a control strategy making modal manifolds attractors for the system, and acting on the total energy of the soft robot to move from a modal evolution to the other. In this way, a large class of autonomous behaviors can be excited, which are direct expression of the embodied intelligence of the soft robot. Despite the fact that the idea behind our work comes from physical intuition and preliminary experimental validations, the formulation that we have provided so far is however rather theoretical, and very much in need of an experimental validation. The aim of this paper is to provide such an experimental validation using as testbed the articulated soft leg. We will introduce a simplified control strategy, and we will test its effectiveness on this system, to implement swing-like oscillations. We plan to extend this validation with a soft quadruped.

Matrix/array analysis of networks can provide significant insight into their behavior and aid in their operation and protection. Prior work has demonstrated the analytic, performance, and compression capabilities of GraphBLAS (graphblas.org) hypersparse matrices and D4M (d4m.mit.edu) associative arrays (a mathematical superset of matrices). Obtaining the benefits of these capabilities requires integrating them into operational systems, which comes with its own unique challenges. This paper describes two examples of real-time operational implementations. First, is an operational GraphBLAS implementation that constructs anonymized hypersparse matrices on a high-bandwidth network tap. Second, is an operational D4M implementation that analyzes daily cloud gateway logs. The architectures of these implementations are presented. Detailed measurements of the resources and the performance are collected and analyzed. The implementations are capable of meeting their operational requirements using modest computational resources (a couple of processing cores). GraphBLAS is well-suited for low-level analysis of high-bandwidth connections with relatively structured network data. D4M is well-suited for higher-level analysis of more unstructured data. This work demonstrates that these technologies can be implemented in operational settings.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $94k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we further introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially at no additional memory cost, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data will be released.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司