亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We examine a variety of numerical methods that arise when considering dynamical systems in the context of physics-based simulations of deformable objects. Such problems arise in various applications, including animation, robotics, control and fabrication. The goals and merits of suitable numerical algorithms for these applications are different from those of typical numerical analysis research in dynamical systems. Here the mathematical model is not fixed a priori but must be adjusted as necessary to capture the desired behaviour, with an emphasis on effectively producing lively animations of objects with complex geometries. Results are often judged by how realistic they appear to observers (by the "eye-norm") as well as by the efficacy of the numerical procedures employed. And yet, we show that with an adjusted view numerical analysis and applied mathematics can contribute significantly to the development of appropriate methods and their analysis in a variety of areas including finite element methods, stiff and highly oscillatory ODEs, model reduction, and constrained optimization.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 可約的 · 邊緣計算 · 邊緣設備 · Networks ·
2021 年 10 月 15 日

The current trend in end-user devices' advancements in computing and communication capabilities makes edge computing an attractive solution to pave the way for the coveted ultra-low latency services. The success of the edge computing networking paradigm depends on the proper orchestration of the edge servers. Several Edge applications and services are intolerant to latency, especially in 5G and beyond networks, such as intelligent video surveillance, E-health, Internet of Vehicles, and augmented reality applications. The edge devices underwent rapid growth in both capabilities and size to cope with the service demands. Orchestrating it on the cloud was a prominent trend during the past decade. However, the increasing number of edge devices poses a significant burden on the orchestration delay. In addition to the growth in edge devices, the high mobility of users renders traditional orchestration schemes impractical for contemporary edge networks. Proper segmentation of the edge space becomes necessary to adapt these schemes to address these challenges. In this paper, we introduce a segmentation technique employing lax clustering and segregated mobility-based clustering. We then apply latency mapping to these clusters. The proposed scheme's main objective is to create subspaces (segments) that enable light and efficient edge orchestration by reducing the processing time and the core cloud communication overhead. A bench-marking simulation is conducted with the results showing decreased mobility-related failures and reduced orchestration delay.

This paper explores the role of multiple antennas in mitigating jamming attacks for the Rayleigh fading environment with exogenous random traffic arrival. The jammer is assumed to have energy harvesting ability where energy arrives according to Bernoulli process. The outage probabilities are derived with different assumptions on the number of antennas at the transmitter and receiver. The outage probability for the Alamouti space-time code is also derived. The work characterizes the average service rate for different antenna configurations taking into account of random arrival of data and energy at the transmitter and jammer, respectively. In many practical applications, latency and timely updates are of importance, thus, delay and Average Age of Information (AAoI) are the meaningful metrics to be considered. The work characterizes these metrics under jamming attack. The impact of finite and infinite energy battery size at the jammer on various performance metrics is also explored. Two optimization problems are considered to explore the interplay between AAoI and delay under jamming attack. Furthermore, our results show that Alamouti code can significantly improve the performance of the system even under jamming attack, with less power budget. The paper also demonstrates how the developed results can be useful for multiuser scenarios.

In this article we propose an inverse analysis algorithm to find the best fit of multiple material parameters in different coupled multi-physics biofilm models. We use a nonlinear continuum mechanical approach to model biofilm deformation that occurs in flow cell experiments. The objective function is based on a simple geometrical measurement of the distance of the fluid biofilm interface between model and experiments. A Levenberg-Marquardt algorithm based on finite difference approximation is used as an optimizer. The proposed method uses a moderate to low amount of model evaluations. For a first presentation and evaluation the algorithm is applied and tested on different numerical examples based on generated numerical results and the addition of Gaussian noise. Achieved numerical results show that the proposed method serves well for different physical effects investigated and numerical approaches chosen for the model. Presented examples show the inverse analysis for multiple parameters in biofilm models including fluid-solid interaction effects, poroelasticity, heterogeneous material properties and growth.

In providing physical assistance to elderly people, ensuring cooperative behavior from the elderly persons is a critical requirement. In sit-to-stand assistance, for example, an older adult must lean forward, so that the body mass can shift towards the feet before a caregiver starts lifting the body. An experienced caregiver guides the older adult through verbal communications and physical interactions, so that the older adult may be cooperative throughout the process. This guidance is of paramount importance and is a major challenge in introducing a robotic aid to the eldercare environment. The wide-scope goal of the current work is to develop an intelligent eldercare robot that can a) monitor the mental state of an older adult, and b) guide the older adult through an assisting procedure so that he/she can be cooperative in being assisted. The current work presents a basic modeling framework for describing a human's physical behaviors reflecting an internal mental state, and an algorithm for estimating the mental state through interactive observations. The sit-to-stand assistance problem is considered for the initial study. A simple Kalman Filter is constructed for estimating the level of cooperativeness in response to applied cues, with a thresholding scheme being used to make judgments on the cooperativeness state.

Many recent human-robot collaboration strategies, such as Assist-As-Needed (AAN), are promoting humancentered robot control, where the robot continuously adapts its assistance level based on the real-time need of its human counterpart. One of the fundamental assumptions of these approaches is the ability to measure or estimate the physical capacity of humans in real-time. In this work, we propose an algorithm for the feasibility set analysis of a generic class of linear algebra problems. This novel iterative convex-hull method is applied to the determination of the feasible Cartesian wrench polytope associated to a musculoskeletal model of the human upper limb. The method is capable of running in real-time and allows the user to define the desired estimation accuracy. The algorithm performance analysis shows that the execution time has near-linear relationship to the considered number of muscles, as opposed to the exponential relationship of the conventional methods. Finally, real-time robot control application of the algorithm is demonstrated in a Collaborative carrying experiment, where a human operator and a Franka Emika Panda robot jointly carry a 7kg object. The robot is controlled in accordance to the AAN paradigm maintaining the load carried by the human operator at 30% of its carrying capacity.

Video-based sensing from aerial drones, especially small multirotor drones, can provide rich data for numerous applications, including traffic analysis (computing traffic flow volumes), precision agriculture (periodically evaluating plant health), and wildlife population management (estimating population sizes). However, aerial drone video sensing applications must handle a surprisingly wide range of tasks: video frames must be aligned so that we can equate coordinates of objects that appear in different frames, video data must be analyzed to extract application-specific insights, and drone routes must be computed that maximize the value of newly captured video. To address these challenges, we built SkyQuery, a novel aerial drone video sensing platform that provides an expressive, high-level programming language to make it straightforward for users to develop complex long-running sensing applications. SkyQuery combines novel methods for fast video frame alignment and detection of small objects in top-down aerial drone video to efficiently execute applications with diverse video analysis workflows and data distributions, thereby allowing application developers to focus on the unique qualities of their particular application rather than general video processing, data analysis, and drone routing tasks. We conduct diverse case studies using SkyQuery in parking monitoring, pedestrian activity mapping, and traffic hazard detection scenarios to demonstrate the generalizability and effectiveness of our system.

It is often observed that thermal stress enhances crack propagation in materials, and conversely, crack propagation can contribute to temperature shifts in materials. In this study, we first consider the thermoelasticity model proposed by M. A. Biot (1956) and study its energy dissipation property. The Biot thermoelasticity model takes into account the following effects. Thermal expansion and contraction are caused by temperature changes, and conversely, temperatures decrease in expanding areas but increase in contracting areas. In addition, we examine its thermomechanical properties through several numerical examples and observe that the stress near a singular point is enhanced by the thermoelastic effect. In the second part, we propose two crack propagation models under thermal stress by coupling a phase field model for crack propagation and the Biot thermoelasticity model and show their variational structures. In our numerical experiments, we investigate how thermal coupling affects the crack speed and shape. In particular, we observe that the lowest temperature appears near the crack tip, and the crack propagation is accelerated by the enhanced thermal stress.

Stereoscopic projection mapping (PM) allows a user to see a three-dimensional (3D) computer-generated (CG) object floating over physical surfaces of arbitrary shapes around us using projected imagery. However, the current stereoscopic PM technology only satisfies binocular cues and is not capable of providing correct focus cues, which causes a vergence--accommodation conflict (VAC). Therefore, we propose a multifocal approach to mitigate VAC in stereoscopic PM. Our primary technical contribution is to attach electrically focus-tunable lenses (ETLs) to active shutter glasses to control both vergence and accommodation. Specifically, we apply fast and periodical focal sweeps to the ETLs, which causes the "virtual image'" (as an optical term) of a scene observed through the ETLs to move back and forth during each sweep period. A 3D CG object is projected from a synchronized high-speed projector only when the virtual image of the projected imagery is located at a desired distance. This provides an observer with the correct focus cues required. In this study, we solve three technical issues that are unique to stereoscopic PM: (1) The 3D CG object is displayed on non-planar and even moving surfaces; (2) the physical surfaces need to be shown without the focus modulation; (3) the shutter glasses additionally need to be synchronized with the ETLs and the projector. We also develop a novel compensation technique to deal with the "lens breathing" artifact that varies the retinal size of the virtual image through focal length modulation. Further, using a proof-of-concept prototype, we demonstrate that our technique can present the virtual image of a target 3D CG object at the correct depth. Finally, we validate the advantage provided by our technique by comparing it with conventional stereoscopic PM using a user study on a depth-matching task.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

北京阿比特科技有限公司