We present a mixed finite element method with parallelogram meshes for the Kirchhoff-Love plate bending model. Critical ingredient is the construction of appropriate basis functions that are conforming in terms of a sufficiently large tensor space and allow for any kind of physically relevant Dirichlet and Neumann boundary conditions. For Dirichlet boundary conditions, and polygonal convex or non-convex plates that can be discretized by parallelogram meshes, we prove quasi-optimal convergence of the mixed scheme. Numerical results for regular and singular examples with different boundary conditions illustrate our findings.
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower-Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.
We show that convex-concave Lipschitz stochastic saddle point problems (also known as stochastic minimax optimization) can be solved under the constraint of $(\epsilon,\delta)$-differential privacy with \emph{strong (primal-dual) gap} rate of $\tilde O\big(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\big)$, where $n$ is the dataset size and $d$ is the dimension of the problem. This rate is nearly optimal, based on existing lower bounds in differentially private stochastic optimization. Specifically, we prove a tight upper bound on the strong gap via novel implementation and analysis of the recursive regularization technique repurposed for saddle point problems. We show that this rate can be attained with $O\big(\min\big\{\frac{n^2\epsilon^{1.5}}{\sqrt{d}}, n^{3/2}\big\}\big)$ gradient complexity, and $\tilde{O}(n)$ gradient complexity if the loss function is smooth. As a byproduct of our method, we develop a general algorithm that, given a black-box access to a subroutine satisfying a certain $\alpha$ primal-dual accuracy guarantee with respect to the empirical objective, gives a solution to the stochastic saddle point problem with a strong gap of $\tilde{O}(\alpha+\frac{1}{\sqrt{n}})$. We show that this $\alpha$-accuracy condition is satisfied by standard algorithms for the empirical saddle point problem such as the proximal point method and the stochastic gradient descent ascent algorithm. Further, we show that even for simple problems it is possible for an algorithm to have zero weak gap and suffer from $\Omega(1)$ strong gap. We also show that there exists a fundamental tradeoff between stability and accuracy. Specifically, we show that any $\Delta$-stable algorithm has empirical gap $\Omega\big(\frac{1}{\Delta n}\big)$, and that this bound is tight. This result also holds also more specifically for empirical risk minimization problems and may be of independent interest.
We study the problem of extracting randomness from somewhere-random sources, and related combinatorial phenomena: partition analogues of Shearer's lemma on projections. A somewhere-random source is a tuple $(X_1, \ldots, X_t)$ of (possibly correlated) $\{0,1\}^n$-valued random variables $X_i$ where for some unknown $i \in [t]$, $X_i$ is guaranteed to be uniformly distributed. An $extracting$ $merger$ is a seeded device that takes a somewhere-random source as input and outputs nearly uniform random bits. We study the seed-length needed for extracting mergers with constant $t$ and constant error. We show: $\cdot$ Just like in the case of standard extractors, seedless extracting mergers with even just one output bit do not exist. $\cdot$ Unlike the case of standard extractors, it $is$ possible to have extracting mergers that output a constant number of bits using only constant seed. Furthermore, a random choice of merger does not work for this purpose! $\cdot$ Nevertheless, just like in the case of standard extractors, an extracting merger which gets most of the entropy out (namely, having $\Omega$ $(n)$ output bits) must have $\Omega$ $(\log n)$ seed. This is the main technical result of our work, and is proved by a second-moment strengthening of the graph-theoretic approach of Radhakrishnan and Ta-Shma to extractors. In contrast, seed-length/output-length tradeoffs for condensing mergers (where the output is only required to have high min-entropy), can be fully explained by using standard condensers. Inspired by such considerations, we also formulate a new and basic class of problems in combinatorics: partition analogues of Shearer's lemma. We show basic results in this direction; in particular, we prove that in any partition of the $3$-dimensional cube $[0,1]^3$ into two parts, one of the parts has an axis parallel $2$-dimensional projection of area at least $3/4$.
We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_0\times Q_0$, $\textbf{BDM}_1\times Q_0$, and $\textbf{RT}_1\times Q_1$. Here $Q_k$ is the space of discontinuous polynomial functions of degree k, $\textbf{RT}_{k}$ is the Raviart-Thomas space, and $\textbf{BDM}_k$ is the Brezzi-Douglas-Marini space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the resulting linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose two corrections to the standard stabilization strategy: using macro-elements and new stabilization terms for the pressure. By decomposing the computational mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is active only where needed. By modifying the standard stabilization terms for the pressure we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We derive a priori error estimates for the proposed unfitted finite element discretization based on $\textbf{RT}_k\times Q_k$, $k\geq 0$. Numerical experiments indicate that with the new method we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.
We investigate the problem of joint statistical estimation of several parameters for a stochastic differential equations driven by an additive fractional Brownian motion. Based on discrete-time observations of the model, we construct an estimator of the Hurst parameter, the diffusion parameter and the drift, which lies in a parametrised family of coercive drift coefficients. Our procedure is based on the assumption that the stationary distribution of the SDE and of its increments permits to identify the parameters of the model. Under this assumption, we prove consistency results and derive a rate of convergence for the estimator. Finally, we show that the identifiability assumption is satisfied in the case of a family of fractional Ornstein-Uhlenbeck processes and illustrate our results with some numerical experiments.
A novel numerical strategy is introduced for computing approximations of solutions to a Cahn-Hilliard model with degenerate mobilities. This model has recently been introduced as a second-order phase-field approximation for surface diffusion flows. Its numerical discretization is challenging due to the degeneracy of the mobilities, which generally requires an implicit treatment to avoid stability issues at the price of increased complexity costs. To mitigate this drawback, we consider new first- and second-order Scalar Auxiliary Variable (SAV) schemes that, differently from existing approaches, focus on the relaxation of the mobility, rather than the Cahn-Hilliard energy. These schemes are introduced and analysed theoretically in the general context of gradient flows and then specialised for the Cahn-Hilliard equation with mobilities. Various numerical experiments are conducted to highlight the advantages of these new schemes in terms of accuracy, effectiveness and computational cost.
This paper is interested in developing reduced order models (ROMs) for repeated simulation of fractional elliptic partial differential equations (PDEs) for multiple values of the parameters (e.g., diffusion coefficients or fractional exponent) governing these models. These problems arise in many applications including simulating Gaussian processes, and geophysical electromagnetics. The approach uses the Kato integral formula to express the solution as an integral involving the solution of a parametrized elliptic PDE, which is discretized using finite elements in space and sinc quadrature for the fractional part. The offline stage of the ROM is accelerated using a solver for shifted linear systems, MPGMRES-Sh, and using a randomized approach for compressing the snapshot matrix. Our approach is both computational and memory efficient. Numerical experiments on a range of model problems, including an application to Gaussian processes, show the benefits of our approach.
In the classic implementation of the LOBPCG method, orthogonalization and the R-R (Rayleigh-Ritz) procedure cost nonignorable CPU time. Especially this consumption could be very expensive to deal with situations with large block sizes. In this paper, we propose an orthogonalization-free framework of implementing the LOBPCG method for SCF (self-consistent field) iterations in solving the Kohn-Sham equation. In this framework, orthogonalization is avoided in calculations, which can decrease the computational complexity. And the R-R procedure is implemented parallelly through OpenMP, which can further reduce computational time. During numerical experiments, an effective preconditioning strategy is designed, which can accelerate the LOBPCG method remarkably. Consequently, the efficiency of the LOBPCG method can be significantly improved. Based on this, the SCF iteration can solve the Kohn-Sham equation efficiently. A series of numerical experiments are inducted to demonstrate the effectiveness of our implementation, in which significant improvements in computational time can be observed.
We consider the singularly perturbed fourth-order boundary value problem $\varepsilon ^{2}\Delta ^{2}u-\Delta u=f $ on the unit square $\Omega \subset \mathbb{R}^2$, with boundary conditions $u = \partial u / \partial n = 0$ on $\partial \Omega$, where $\varepsilon \in (0, 1)$ is a small parameter. The problem is solved numerically by means of a weak Galerkin(WG) finite element method, which is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on finite element partitions consisting of polygons of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter-free. Under reasonable assumptions on the structure of the boundary layers that appear in the solution, a family of suitable Shishkin meshes with $N^2$ elements is constructed ,convergence of the method is proved in a discrete $H^2$ norm for the corresponding WG finite element solutions and numerical results are presented.
We revisit the problem of spurious modes that are sometimes encountered in partial differential equations discretizations. It is generally suspected that one of the causes for spurious modes is due to how boundary conditions are treated, and we use this as the starting point of our investigations. By regarding boundary conditions as algebraic constraints on a differential equation, we point out that any differential equation with homogeneous boundary conditions also admits a typically infinite number of hidden or implicit boundary conditions. In most discretization schemes, these additional implicit boundary conditions are violated, and we argue that this is what leads to the emergence of spurious modes. These observations motivate two definitions of the quality of computed eigenvalues based on violations of derivatives of boundary conditions on the one hand, and on the Grassmann distance between subspaces associated with computed eigenspaces on the other. Both of these tests are based on a standardized treatment of boundary conditions and do not require a priori knowledge of eigenvalue locations. The effectiveness of these tests is demonstrated on several examples known to have spurious modes. In addition, these quality tests show that in most problems, about half the computed spectrum of a differential operator is of low quality. The tests also specifically identify the low accuracy modes, which can then be projected out as a type of model reduction scheme.