亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose the (keyed) permutation Arion and the hash function ArionHash over $\mathbb{F}_p$ for odd and particularly large primes. The design of Arion is based on the newly introduced Generalized Triangular Dynamical System (GTDS), which provides a new algebraic framework for constructing (keyed) permutation using polynomials over a finite field. At round level Arion is the first design which is instantiated using the new GTDS. We provide extensive security analysis of our construction including algebraic cryptanalysis (e.g. interpolation and Gr\"obner basis attacks) that are particularly decisive in assessing the security of permutations and hash functions over $\mathbb{F}_p$. From an application perspective, ArionHash aims for efficient implementation in zkSNARK protocols and Zero-Knowledge proof systems. For this purpose, we exploit that CCZ-equivalence of graphs can lead to a more efficient implementation of Arithmetization-Oriented primitives. We compare the efficiency of ArionHash in R1CS and Plonk settings with other hash functions such as Poseidon, Anemoi and Griffin. For demonstrating the practical efficiency of ArionHash we implemented it with the zkSNARK libraries libsnark and Dusk Network Plonk. Our result shows that ArionHash is significantly faster than Poseidon - a hash function designed for zero-knowledge proof systems. We also found that an aggressive version of ArionHash is considerably faster than Anemoi and Griffin in a practical zkSNARK setting.

相關內容

Peer production platforms like Wikipedia commonly suffer from content gaps. Prior research suggests recommender systems can help solve this problem, by guiding editors towards underrepresented topics. However, it remains unclear whether this approach would result in less relevant recommendations, leading to reduced overall engagement with recommended items. To answer this question, we first conducted offline analyses (Study 1) on SuggestBot, a task-routing recommender system for Wikipedia, then did a three-month controlled experiment (Study 2). Our results show that presenting users with articles from underrepresented topics increased the proportion of work done on those articles without significantly reducing overall recommendation uptake. We discuss the implications of our results, including how ignoring the article discovery process can artificially narrow recommendations. We draw parallels between this phenomenon and the common issue of "filter bubbles" to show how any platform that employs recommender systems is susceptible to it.

We consider hypergraph network design problems where the goal is to construct a hypergraph satisfying certain properties. In graph network design problems, the number of edges in an arbitrary solution is at most the square of the number of vertices. In contrast, in hypergraph network design problems, the number of hyperedges in an arbitrary solution could be exponential in the number of vertices and hence, additional care is necessary to design polynomial-time algorithms. The central theme of this work is to show that certain hypergraph network design problems admit solutions with polynomial number of hyperedges and moreover, can be solved in strongly polynomial time. Our work improves on the previous fastest pseudo-polynomial run-time for these problems. In addition, we develop algorithms that return (near-)uniform hypergraphs as solutions. The hypergraph network design problems that we focus upon are splitting-off operation in hypergraphs, connectivity augmentation using hyperedges, and covering skew-supermodular functions using hyperedges. Our definition of the splitting-off operation in hypergraphs and our proof showing the existence of the operation using a strongly polynomial-time algorithm to compute it are likely to be of independent graph-theoretical interest.

We present a novel Graph-based debiasing Algorithm for Underreported Data (GRAUD) aiming at an efficient joint estimation of event counts and discovery probabilities across spatial or graphical structures. This innovative method provides a solution to problems seen in fields such as policing data and COVID-$19$ data analysis. Our approach avoids the need for strong priors typically associated with Bayesian frameworks. By leveraging the graph structures on unknown variables $n$ and $p$, our method debiases the under-report data and estimates the discovery probability at the same time. We validate the effectiveness of our method through simulation experiments and illustrate its practicality in one real-world application: police 911 calls-to-service data.

Long-range context modeling is crucial to both dialogue understanding and generation. The most popular method for dialogue context representation is to concatenate the last-$k$ previous utterances. However, this method may not be ideal for conversations containing long-range dependencies as it cannot look beyond last-$k$ utterances. In this work, we propose DialoGen, a novel encoder-decoder based framework for conversational response generation with a generalized context representation that can look beyond the last-$k$ utterances. Hence the method is adaptive to conversations with long-range dependencies. The main idea of our approach is to identify and utilize the most relevant historical utterances instead of the last-$k$ utterances in chronological order. We study the effectiveness of our proposed method on both dialogue generation (open-domain) and understanding (DST) tasks. DialoGen achieves comparable performance with the state-of-the-art models on DailyDialog dataset. We also observe performance gain in existing DST models with our proposed context representation strategy on MultiWOZ dataset. We discuss the generalizability and interpretability of DialoGen and show that the relevance score of previous utterances agrees well with human cognition.

Process discovery studies ways to use event data generated by business processes and recorded by IT systems to construct models that describe the processes. Existing discovery algorithms are predominantly concerned with constructing process models that represent the control flow of the processes. Agent system mining argues that business processes often emerge from interactions of autonomous agents and uses event data to construct models of the agents and their interactions. This paper presents and evaluates Agent Miner, an algorithm for discovering models of agents and their interactions from event data composing the system that has executed the processes which generated the input data. The conducted evaluation using our open-source implementation of Agent Miner and publicly available industrial datasets confirms that our algorithm can provide insights into the process participants and their interaction patterns and often discovers models that describe the business processes more faithfully than process models discovered using conventional process discovery algorithms.

Finding diverse solutions to optimization problems has been of practical interest for several decades, and recently enjoyed increasing attention in research. While submodular optimization has been rigorously studied in many fields, its diverse solutions extension has not. In this study, we consider the most basic variants of submodular optimization, and propose two simple greedy algorithms, which are known to be effective at maximizing monotone submodular functions. These are equipped with parameters that control the trade-off between objective and diversity. Our theoretical contribution shows their approximation guarantees in both objective value and diversity, as functions of their respective parameters. Our experimental investigation with maximum vertex coverage instances demonstrates their empirical differences in terms of objective-diversity trade-offs.

Choice Modeling is at the core of many economics, operations, and marketing problems. In this paper, we propose a fundamental characterization of choice functions that encompasses a wide variety of extant choice models. We demonstrate how nonparametric estimators like neural nets can easily approximate such functionals and overcome the curse of dimensionality that is inherent in the non-parametric estimation of choice functions. We demonstrate through extensive simulations that our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion and outperform traditional parametric models. As demand settings often exhibit endogenous features, we extend our framework to incorporate estimation under endogenous features. Further, we also describe a formal inference procedure to construct valid confidence intervals on objects of interest like price elasticity. Finally, to assess the practical applicability of our estimator, we utilize a real-world dataset from S. Berry, Levinsohn, and Pakes (1995). Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities that are consistent with the observations reported in the existing literature.

Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司