亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the classical problems of estimating the mean of an $n$-dimensional normally (with identity covariance matrix) or Poisson distributed vector under the squared loss. In a Bayesian setting the optimal estimator is given by the prior-dependent conditional mean. In a frequentist setting various shrinkage methods were developed over the last century. The framework of empirical Bayes, put forth by Robbins (1956), combines Bayesian and frequentist mindsets by postulating that the parameters are independent but with an unknown prior and aims to use a fully data-driven estimator to compete with the Bayesian oracle that knows the true prior. The central figure of merit is the regret, namely, the total excess risk over the Bayes risk in the worst case (over the priors). Although this paradigm was introduced more than 60 years ago, little is known about the asymptotic scaling of the optimal regret in the nonparametric setting. We show that for the Poisson model with compactly supported and subexponential priors, the optimal regret scales as $\Theta((\frac{\log n}{\log\log n})^2)$ and $\Theta(\log^3 n)$, respectively, both attained by the original estimator of Robbins. For the normal mean model, the regret is shown to be at least $\Omega((\frac{\log n}{\log\log n})^2)$ and $\Omega(\log^2 n)$ for compactly supported and subgaussian priors, respectively, the former of which resolves the conjecture of Singh (1979) on the impossibility of achieving bounded regret; before this work, the best regret lower bound was $\Omega(1)$. %Analogous results for subgaussian or subexponential priors are also obtained. In addition to the empirical Bayes setting, these results are shown to hold in the compound setting where the parameters are deterministic. As a side application, the construction in this paper also leads to improved or new lower bounds for mixture density estimation.

相關內容

In this work, we consider the optimization formulation for symmetric tensor decomposition recently introduced in the Subspace Power Method (SPM) of Kileel and Pereira. Unlike popular alternative functionals for tensor decomposition, the SPM objective function has the desirable properties that its maximal value is known in advance, and its global optima are exactly the rank-1 components of the tensor when the input is sufficiently low-rank. We analyze the non-convex optimization landscape associated with the SPM objective. Our analysis accounts for working with noisy tensors. We derive quantitative bounds such that any second-order critical point with SPM objective value exceeding the bound must equal a tensor component in the noiseless case, and must approximate a tensor component in the noisy case. For decomposing tensors of size $D^{\times m}$, we obtain a near-global guarantee up to rank $\widetilde{o}(D^{\lfloor m/2 \rfloor})$ under a random tensor model, and a global guarantee up to rank $\mathcal{O}(D)$ assuming deterministic frame conditions. This implies that SPM with suitable initialization is a provable, efficient, robust algorithm for low-rank symmetric tensor decomposition. We conclude with numerics that show a practical preferability for using the SPM functional over a more established counterpart.

In this paper, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. {\it A~priori} error estimates of optimal order are derived for velocity and pressure in the energy norm and the $L^2$-norm, respectively. Moreover, a reliable and efficient {\it a~posteriori} error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix-Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.

In this paper we present a finite element analysis for a Dirichlet boundary control problem governed by the Stokes equation. The Dirichlet control is considered in a convex closed subset of the energy space $\mathbf{H}^1(\Omega).$ Most of the previous works on the Stokes Dirichlet boundary control problem deals with either tangential control or the case where the flux of the control is zero. This choice of the control is very particular and their choice of the formulation leads to the control with limited regularity. To overcome this difficulty, we introduce the Stokes problem with outflow condition and the control acts on the Dirichlet boundary only hence our control is more general and it has both the tangential and normal components. We prove well-posedness and discuss on the regularity of the control problem. The first-order optimality condition for the control leads to a Signorini problem. We develop a two-level finite element discretization by using $\mathbf{P}_1$ elements(on the fine mesh) for the velocity and the control variable and $P_0$ elements (on the coarse mesh) for the pressure variable. The standard energy error analysis gives $\frac{1}{2}+\frac{\delta}{2}$ order of convergence when the control is in $\mathbf{H}^{\frac{3}{2}+\delta}(\Omega)$ space. Here we have improved it to $\frac{1}{2}+\delta,$ which is optimal. Also, when the control lies in less regular space we derived optimal order of convergence up to the regularity. The theoretical results are corroborated by a variety of numerical tests.

In this paper we consider multi-objective reinforcement learning where the objectives are balanced using preferences. In practice, the preferences are often given in an adversarial manner, e.g., customers can be picky in many applications. We formalize this problem as an episodic learning problem on a Markov decision process, where transitions are unknown and a reward function is the inner product of a preference vector with pre-specified multi-objective reward functions. We consider two settings. In the online setting, the agent receives a (adversarial) preference every episode and proposes policies to interact with the environment. We provide a model-based algorithm that achieves a nearly minimax optimal regret bound $\widetilde{\mathcal{O}}\bigl(\sqrt{\min\{d,S\}\cdot H^2 SAK}\bigr)$, where $d$ is the number of objectives, $S$ is the number of states, $A$ is the number of actions, $H$ is the length of the horizon, and $K$ is the number of episodes. Furthermore, we consider preference-free exploration, i.e., the agent first interacts with the environment without specifying any preference and then is able to accommodate arbitrary preference vector up to $\epsilon$ error. Our proposed algorithm is provably efficient with a nearly optimal trajectory complexity $\widetilde{\mathcal{O}}\bigl({\min\{d,S\}\cdot H^3 SA}/{\epsilon^2}\bigr)$. This result partly resolves an open problem raised by \citet{jin2020reward}.

In this paper, we investigate the question: Given a small number of datapoints, for example N = 30, how tight can PAC-Bayes and test set bounds be made? For such small datasets, test set bounds adversely affect generalisation performance by withholding data from the training procedure. In this setting, PAC-Bayes bounds are especially attractive, due to their ability to use all the data to simultaneously learn a posterior and bound its generalisation risk. We focus on the case of i.i.d. data with a bounded loss and consider the generic PAC-Bayes theorem of Germain et al. While their theorem is known to recover many existing PAC-Bayes bounds, it is unclear what the tightest bound derivable from their framework is. For a fixed learning algorithm and dataset, we show that the tightest possible bound coincides with a bound considered by Catoni; and, in the more natural case of distributions over datasets, we establish a lower bound on the best bound achievable in expectation. Interestingly, this lower bound recovers the Chernoff test set bound if the posterior is equal to the prior. Moreover, to illustrate how tight these bounds can be, we study synthetic one-dimensional classification tasks in which it is feasible to meta-learn both the prior and the form of the bound to numerically optimise for the tightest bounds possible. We find that in this simple, controlled scenario, PAC-Bayes bounds are competitive with comparable, commonly used Chernoff test set bounds. However, the sharpest test set bounds still lead to better guarantees on the generalisation error than the PAC-Bayes bounds we consider.

We study approximation methods for a large class of mixed models with a probit link function that includes mixed versions of the binomial model, the multinomial model, and generalized survival models. The class of models is special because the marginal likelihood can be expressed as Gaussian weighted integrals or as multivariate Gaussian cumulative density functions. The latter approach is unique to the probit link function models and has been proposed for parameter estimation in complex, mixed effects models. However, it has not been investigated in which scenarios either form is preferable. Our simulations and data example show that neither form is preferable in general and give guidance on when to approximate the cumulative density functions and when to approximate the Gaussian weighted integrals and, in the case of the latter, which general purpose method to use among a large list of methods.

In this paper we are concerned with energy-conserving methods for Poisson problems, which are effectively solved by defining a suitable generalization of HBVMs, a class of energy-conserving methods for Hamiltonian problems. The actual implementation of the methods is fully discussed, with a particular emphasis on the conservation of Casimirs. Some numerical tests are reported, in order to assess the theoretical findings.

Surrogate risk minimization is an ubiquitous paradigm in supervised machine learning, wherein a target problem is solved by minimizing a surrogate loss on a dataset. Surrogate regret bounds, also called excess risk bounds, are a common tool to prove generalization rates for surrogate risk minimization. While surrogate regret bounds have been developed for certain classes of loss functions, such as proper losses, general results are relatively sparse. We provide two general results. The first gives a linear surrogate regret bound for any polyhedral (piecewise-linear and convex) surrogate, meaning that surrogate generalization rates translate directly to target rates. The second shows that for sufficiently non-polyhedral surrogates, the regret bound is a square root, meaning fast surrogate generalization rates translate to slow rates for the target. Together, these results suggest polyhedral surrogates are optimal in many cases.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司