We propose an implicit Discontinuous Galerkin (DG) discretization for incompressible two-phase flows using an artificial compressibility formulation. Conservative level set (CLS) method is employed in combination with a reinitialization procedure to capture the moving interface. A projection method based on the L-stable TR-BDF2 method is adopted for the time discretization of the Navier-Stokes equations and of the level set method. Adaptive Mesh Refinement (AMR) is employed to enhance the resolution in correspondence of the interface between the two fluids. The effectiveness of the proposed approach is shown in a number of classical benchmarks, such as the Rayleigh-Taylor instability and the rising bubble test case, for which a specific analysis on the influence of different choices of the mixture viscosity is carried out.
Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric nonlinear Hamiltonian systems is still challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov $n$-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the resulting fully adaptive models compared to the original and reduced order models.
This paper develops a new vascular respiratory motion compensation algorithm, Motion-Related Compensation (MRC), to conduct vascular respiratory motion compensation by extrapolating the correlation between invisible vascular and visible non-vascular. Robot-assisted vascular intervention can significantly reduce the radiation exposure of surgeons. In robot-assisted image-guided intervention, blood vessels are constantly moving/deforming due to respiration, and they are invisible in the X-ray images unless contrast agents are injected. The vascular respiratory motion compensation technique predicts 2D vascular roadmaps in live X-ray images. When blood vessels are visible after contrast agents injection, vascular respiratory motion compensation is conducted based on the sparse Lucas-Kanade feature tracker. An MRC model is trained to learn the correlation between vascular and non-vascular motions. During the intervention, the invisible blood vessels are predicted with visible tissues and the trained MRC model. Moreover, a Gaussian-based outlier filter is adopted for refinement. Experiments on in-vivo data sets show that the proposed method can yield vascular respiratory motion compensation in 0.032 sec, with an average error 1.086 mm. Our real-time and accurate vascular respiratory motion compensation approach contributes to modern vascular intervention and surgical robots.
Gaussian elimination (GE) is the most used dense linear solver. Error analysis of GE with selected pivoting strategies on well-conditioned systems can focus on studying the behavior of growth factors. Although exponential growth is possible with GE with partial pivoting (GEPP), growth tends to stay much smaller in practice. Support for this behavior was provided last year by Huang and Tikhomirov's average-case analysis of GEPP, which showed GEPP growth factors stay at most polynomial with very high probability when using small Gaussian perturbations. GE with complete pivoting (GECP) has also seen a lot of recent interest, with recent improvements to lower bounds on worst-case GECP growth provided by Edelman and Urschel earlier this year. We are interested in studying how GEPP and GECP behave on the same linear systems as well as studying large growth on particular subclasses of matrices, including orthogonal matrices. We will also study systems when GECP leads to larger growth than GEPP, which will lead to new empirical lower bounds on how much worse GECP can behave compared to GEPP in terms of growth. We also present an empirical study on a family of exponential GEPP growth matrices whose polynomial behavior in small neighborhoods limits to the initial GECP growth factor.
In this work, we couple a high-accuracy phase-field fracture reconstruction approach iteratively to fluid-structure interaction. The key motivation is to utilize phase-field modelling to compute the fracture path. A mesh reconstruction allows a switch from interface-capturing to interface-tracking in which the coupling conditions can be realized in a highly accurate fashion. Consequently, inside the fracture, a Stokes flow can be modelled that is coupled to the surrounding elastic medium. A fully coupled approach is obtained by iterating between the phase-field and the fluid-structure interaction model. The resulting algorithm is demonstrated for several numerical examples of quasi-static brittle fractures. We consider both stationary and quasi-stationary problems. In the latter, the dynamics arise through an incrementally-increasing given pressure.
We propose and analyse an explicit boundary-preserving scheme for the strong approximations of some SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The scheme consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L^{p}(\Omega)$-convergence of order $1$, for every $p \in \mathbb{N}$, of the scheme and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting scheme to other numerical schemes for SDEs.
Introduction: Characteristics of hemodynamics strongly affect the patency of arteriovenous fistula (AVF) in hemodialysis patients. Because of pressure balance changes among arteries after AVF construction, regurgitating flow occurs in some patients. Methods: Based on phase-contrast MRI measurements, flow types around the anastomotic site are classified to the three different types of splitting, merging, and one-way, where merging type incorporates regurgitating flow. We have performed computational simulations to analyze characteristic differences among these types. Results: In the merging type, a characteristic spiral flow is observed in AVF causing strong wall shear stress and large pressure drop, whereas the splitting type shows a smooth flow and gives a smaller pressure drop. The one-way case is intermediate between splitting and merging types. Conclusion: Regurgitation brings about high wall shear stress near the anastomotic site because of instabilities induced by merging phenomena, for which type careful follow-up examinations are regarded as necessary.
This work introduces a stabilised finite element formulation for the Stokes flow problem with a nonlinear slip boundary condition of friction type. The boundary condition is enforced with the help of an additional Lagrange multiplier and the stabilised formulation is based on simultaneously stabilising both the pressure and the Lagrange multiplier. We establish the stability and the a priori error analyses, and perform a numerical convergence study in order to verify the theory.
By a semi-Lagrangian change of coordinates, the hydrostatic Euler equations describing free-surface sheared flows is rewritten as a system of quasilinear equations, where stability conditions can be determined by the analysis of its hyperbolic structure. This new system can be written as a quasi linear system in time and horizontal variables and involves no more vertical derivatives. However, the coefficients in front of the horizontal derivatives include an integral operator acting on the new vertical variable. The spectrum of these operators is studied in detail, in particular it includes a continuous part. Riemann invariants are then determined as conserved quantities along the characteristic curves. Examples of solutions are provided, in particular stationary solutions and solutions blowing-up in finite time. Eventually, we propose an exact multi-layer $\mathbb{P}_0$-discretization, which could be used to solve numerically this semi-Lagrangian system, and analyze the eigenvalues of the corresponding discretized operator to investigate the hyperbolic nature of the approximated system.
We study a family of distances between functions of a single variable. These distances are examples of integral probability metrics, and have been used previously for comparing probability measures. Special cases include the Earth Mover's Distance and the Kolmogorov Metric. We examine their properties for general signals, proving that they are robust to a broad class of perturbations and that the distance between one-dimensional tomographic projections of a two-dimensional function is bounded by the size of the difference in projection angles. We also establish error bounds for approximating the metric from finite samples, and prove that these approximations are robust to additive Gaussian noise. The results are illustrated in numerical experiments.
We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual-porosity-Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual-porosity model. We prove that the HDG method is strongly conservative, well-posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples