In this paper, we continue the research on the power of contextual grammars with selection languages from subfamilies of the family of regular languages. In the past, two independent hierarchies have been obtained for external and internal contextual grammars, one based on selection languages defined by structural properties (finite, monoidal, nilpotent, combinational, definite, ordered, non-counting, power-separating, suffix-closed, commutative, circular, or union-free languages), the other one based on selection languages defined by resources (number of non-terminal symbols, production rules, or states needed for generating or accepting them). In a previous paper, the language families of these hierarchies for external contextual grammars were compared and the hierarchies merged. In the present paper, we compare the language families of these hierarchies for internal contextual grammars and merge these hierarchies.
In this paper, we introduce a novel MCMC sampler, PARNI-DAG, for a fully-Bayesian approach to the problem of structure learning under observational data. Under the assumption of causal sufficiency, the algorithm allows for approximate sampling directly from the posterior distribution on Directed Acyclic Graphs (DAGs). PARNI-DAG performs efficient sampling of DAGs via locally informed, adaptive random neighborhood proposal that results in better mixing properties. In addition, to ensure better scalability with the number of nodes, we couple PARNI-DAG with a pre-tuning procedure of the sampler's parameters that exploits a skeleton graph derived through some constraint-based or scoring-based algorithms. Thanks to these novel features, PARNI-DAG quickly converges to high-probability regions and is less likely to get stuck in local modes in the presence of high correlation between nodes in high-dimensional settings. After introducing the technical novelties in PARNI-DAG, we empirically demonstrate its mixing efficiency and accuracy in learning DAG structures on a variety of experiments.
Besides its common use cases in epidemiology, political, and social sciences, causality turns out to be crucial in evaluating the fairness of automated decisions, both in a legal and everyday sense. We provide arguments and examples, of why causality is particularly important for fairness evaluation. In particular, we point out the social impact of non-causal predictions and the legal anti-discrimination process that relies on causal claims. We conclude with a discussion about the challenges and limitations of applying causality in practical scenarios as well as possible solutions.
In this paper, we focus on three sparse matrix operations that are relevant for machine learning applications, namely, the sparse-dense matrix multiplication (SPMM), the sampled dense-dense matrix multiplication (SDDMM), and the composition of the SDDMM with SPMM, also termed as FusedMM. We develop optimized implementations for SPMM, SDDMM, and FusedMM operations utilizing Intel oneAPI's Explicit SIMD (ESIMD) SYCL extension API. In contrast to CUDA or SYCL, the ESIMD API enables the writing of explicitly vectorized kernel code. Sparse matrix algorithms implemented with the ESIMD API achieved performance close to the peak of the targeted Intel Data Center GPU. We compare our performance results to Intel's oneMKL library on Intel GPUs and to a recent CUDA implementation for the sparse matrix operations on NVIDIA's V100 GPU and demonstrate that our implementations for sparse matrix operations outperform either.
In this paper, we employ Singular Value Canonical Correlation Analysis (SVCCA) to analyze representations learnt in a multilingual end-to-end speech translation model trained over 22 languages. SVCCA enables us to estimate representational similarity across languages and layers, enhancing our understanding of the functionality of multilingual speech translation and its potential connection to multilingual neural machine translation. The multilingual speech translation model is trained on the CoVoST 2 dataset in all possible directions, and we utilize LASER to extract parallel bitext data for SVCCA analysis. We derive three major findings from our analysis: (I) Linguistic similarity loses its efficacy in multilingual speech translation when the training data for a specific language is limited. (II) Enhanced encoder representations and well-aligned audio-text data significantly improve translation quality, surpassing the bilingual counterparts when the training data is not compromised. (III) The encoder representations of multilingual speech translation demonstrate superior performance in predicting phonetic features in linguistic typology prediction. With these findings, we propose that releasing the constraint of limited data for low-resource languages and subsequently combining them with linguistically related high-resource languages could offer a more effective approach for multilingual end-to-end speech translation.
In this paper, we prove the first Bayesian regret bounds for Thompson Sampling in reinforcement learning in a multitude of settings. We simplify the learning problem using a discrete set of surrogate environments, and present a refined analysis of the information ratio using posterior consistency. This leads to an upper bound of order $\widetilde{O}(H\sqrt{d_{l_1}T})$ in the time inhomogeneous reinforcement learning problem where $H$ is the episode length and $d_{l_1}$ is the Kolmogorov $l_1-$dimension of the space of environments. We then find concrete bounds of $d_{l_1}$ in a variety of settings, such as tabular, linear and finite mixtures, and discuss how how our results are either the first of their kind or improve the state-of-the-art.
In this paper, we present an approach to enhance interpolation and approximation error estimates. Based on a previously derived first-order Taylor-like formula, we demonstrate its applicability in improving the $P_1$-interpolation error estimate. Following the same principles, we also develop a novel numerical scheme for the heat equation that yields a better error estimate compared to the classical implicit finite differences scheme.
In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on several surgical instrument segmentation datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.
This paper introduces the Chemical Environment Modeling Theory (CEMT), a novel, generalized framework designed to overcome the limitations inherent in traditional atom-centered Machine Learning Force Field (MLFF) models, widely used in atomistic simulations of chemical systems. CEMT demonstrated enhanced flexibility and adaptability by allowing reference points to exist anywhere within the modeled domain and thus, enabling the study of various model architectures. Utilizing Gaussian Multipole (GMP) featurization functions, several models with different reference point sets, including finite difference grid-centered and bond-centered models, were tested to analyze the variance in capabilities intrinsic to models built on distinct reference points. The results underscore the potential of non-atom-centered reference points in force training, revealing variations in prediction accuracy, inference speed and learning efficiency. Finally, a unique connection between CEMT and real-space orbital-free finite element Density Functional Theory (FE-DFT) is established, and the implications include the enhancement of data efficiency and robustness. It allows the leveraging of spatially-resolved energy densities and charge densities from FE-DFT calculations, as well as serving as a pivotal step towards integrating known quantum-mechanical laws into the architecture of ML models.
In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception of the actions, interactions, and expressions of all characters or a single character during a given time period. We categorize the moments into two major types: story moments and discourse moments. Each type of moment can further be classified into three types, which we call universal storytelling moments. We believe these universal moments foster or deteriorate the emotional attachment of the audience to a particular character or the story. We present a methodology to catalog the occurrences of these universal moments as they are found in the story. The cataloged moments can be represented using curves or color strips. Therefore, we can visualize a character's journey through the story as either a 3D curve or a color strip. We also demonstrated that both story and discourse moments can be transformed into one lump-sum attraction parameter. The attraction parameter in time provides a function that can be plotted graphically onto a timeline illustrating changes in the emotional attachment of audience to a character or the story. By inspecting these functions the story analyst can analytically decipher the moments in the story where the attachment is being established, maintained, strengthened, or conversely where it is languishing.
Table of contents (ToC) extraction centres on structuring documents in a hierarchical manner. In this paper, we propose a new dataset, ESGDoc, comprising 1,093 ESG annual reports from 563 companies spanning from 2001 to 2022. These reports pose significant challenges due to their diverse structures and extensive length. To address these challenges, we propose a new framework for Toc extraction, consisting of three steps: (1) Constructing an initial tree of text blocks based on reading order and font sizes; (2) Modelling each tree node (or text block) independently by considering its contextual information captured in node-centric subtree; (3) Modifying the original tree by taking appropriate action on each tree node (Keep, Delete, or Move). This construction-modelling-modification (CMM) process offers several benefits. It eliminates the need for pairwise modelling of section headings as in previous approaches, making document segmentation practically feasible. By incorporating structured information, each section heading can leverage both local and long-distance context relevant to itself. Experimental results show that our approach outperforms the previous state-of-the-art baseline with a fraction of running time. Our framework proves its scalability by effectively handling documents of any length.