The spectrum shift from the sub-6G band to the high-frequency band has posed an ever-increasing demand on the paradigm shift from narrowband beamforming to wideband beamforming. Despite recent research efforts, the problem of wideband beamforming design is particularly challenging in reconfigurable intelligent surface (RIS)-assisted systems, due to that RIS is not capable of performing frequency-dependent phase shift, therefore inducing high signal processing complexity. In this paper, we propose a simple-yet-efficient wideband beamforming design for RIS-assisted systems, in which a transmitter sends wideband signals to a desired target, through the aid of the RIS. In our proposed design, we exploit space-frequency Fourier transformation and stationary phase method to yield an approximate closed-form solution of the RIS phase shifts which significantly reduces the signal processing complexity, compared to the existing approaches. The obtained solution is then used to generate a large and flat beampattern over the desired frequency band. Through numerical results, we validate the effectiveness of our proposed beamforming design and demonstrate how it can improve system performances in terms of communication rate and sensing resolution. Beyond generating the flat beampattern, we highlight that our proposed design is capable of mimicking any desired beampattern by matching the RIS phase shift with the amplitude modulation function, thus providing valuable insights into the design of novel wideband beamforming for RIS-assisted systems.
Despite significant progress in time series forecasting, existing forecasters often overlook the heterogeneity between long-range and short-range time series, leading to performance degradation in practical applications. In this work, we highlight the need of distinct objectives tailored to different ranges. We point out that time series can be decomposed into global patterns and local variations, which should be addressed separately in long- and short-range time series. To meet the objectives, we propose a multi-scale hybrid Mamba-Transformer experts model State Space Transformer (SST). SST leverages Mamba as an expert to extract global patterns in coarse-grained long-range time series, and Local Window Transformer (LWT), the other expert to focus on capturing local variations in fine-grained short-range time series. With an input-dependent mechanism, State Space Model (SSM)-based Mamba is able to selectively retain long-term patterns and filter out fluctuations, while LWT employs a local window to enhance locality-awareness capability, thus effectively capturing local variations. To adaptively integrate the global patterns and local variations, a long-short router dynamically adjusts contributions of the two experts. SST achieves superior performance with scaling linearly $O(L)$ on time series length $L$. The comprehensive experiments demonstrate the SST can achieve SOTA results in long-short range time series forecasting while maintaining low memory footprint and computational cost. The code of SST is available at //github.com/XiongxiaoXu/SST.
Air-ground robots (AGRs) are widely used in surveillance and disaster response due to their exceptional mobility and versatility (i.e., flying and driving). Current AGR navigation systems perform well in static occlusion-prone environments (e.g., indoors) by using 3D semantic occupancy networks to predict occlusions for complete local mapping and then computing Euclidean Signed Distance Field (ESDF) for path planning. However, these systems face challenges in dynamic, severe occlusion scenes (e.g., crowds) due to limitations in perception networks' low prediction accuracy and path planners' high computation overhead. In this paper, we propose OMEGA, which contains OccMamba with an Efficient AGR-Planner to address the above-mentioned problems. OccMamba adopts a novel architecture that separates semantic and occupancy prediction into independent branches, incorporating two mamba blocks within these branches. These blocks efficiently extract semantic and geometric features in 3D environments with linear complexity, ensuring that the network can learn long-distance dependencies to improve prediction accuracy. Semantic and geometric features are combined within the Bird's Eye View (BEV) space to minimise computational overhead during feature fusion. The resulting semantic occupancy map is then seamlessly integrated into the local map, providing occlusion awareness of the dynamic environment. Our AGR-Planner utilizes this local map and employs kinodynamic A* search and gradient-based trajectory optimization to guarantee planning is ESDF-free and energy-efficient. Extensive experiments demonstrate that OccMamba outperforms the state-of-the-art 3D semantic occupancy network with 25.0% mIoU. End-to-end navigation experiments in dynamic scenes verify OMEGA's efficiency, achieving a 96% average planning success rate. Code and video are available at //jmwang0117.github.io/OMEGA/.
Voice cloning is a prominent feature in personalized speech interfaces. A neural vocal cloning system can mimic someone's voice using just a few audio samples. Both speaker encoding and speaker adaptation are topics of research in the field of voice cloning. Speaker adaptation relies on fine-tuning a multi-speaker generative model, which involves training a separate model to infer a new speaker embedding used for speaker encoding. Both methods can achieve excellent performance, even with a small number of cloning audios, in terms of the speech's naturalness and similarity to the original speaker. Speaker encoding approaches are more appropriate for low-resource deployment since they require significantly less memory and have a faster cloning time than speaker adaption, which can offer slightly greater naturalness and similarity. The main goal is to create a vocal cloning system that produces audio output with a Nepali accent or that sounds like Nepali. For the further advancement of TTS, the idea of transfer learning was effectively used to address several issues that were encountered in the development of this system, including the poor audio quality and the lack of available data.
Directly regressing the non-rigid shape and camera pose from the individual 2D frame is ill-suited to the Non-Rigid Structure-from-Motion (NRSfM) problem. This frame-by-frame 3D reconstruction pipeline overlooks the inherent spatial-temporal nature of NRSfM, i.e., reconstructing the whole 3D sequence from the input 2D sequence. In this paper, we propose to model deep NRSfM from a sequence-to-sequence translation perspective, where the input 2D frame sequence is taken as a whole to reconstruct the deforming 3D non-rigid shape sequence. First, we apply a shape-motion predictor to estimate the initial non-rigid shape and camera motion from a single frame. Then we propose a context modeling module to model camera motions and complex non-rigid shapes. To tackle the difficulty in enforcing the global structure constraint within the deep framework, we propose to impose the union-of-subspace structure by replacing the self-expressiveness layer with multi-head attention and delayed regularizers, which enables end-to-end batch-wise training. Experimental results across different datasets such as Human3.6M, CMU Mocap and InterHand prove the superiority of our framework.
Transcribing the speech of multiple overlapping speakers typically requires separating the audio into multiple streams and recognizing each one independently. More recent work jointly separates and transcribes, but requires a separate decoding component for each speaker. We propose the TOGGL model to simultaneously transcribe the speech of multiple speakers. The TOGGL model uses special output tokens to attribute the speech to each speaker with only a single decoder. Our approach generalizes beyond two speakers, even when trained only on two-speaker data. We demonstrate superior performance compared to competing approaches on a conversational speech dataset. Our approach also improves performance on single-speaker audio.
The groundbreaking performance of transformers in Natural Language Processing (NLP) tasks has led to their replacement of traditional Convolutional Neural Networks (CNNs), owing to the efficiency and accuracy achieved through the self-attention mechanism. This success has inspired researchers to explore the use of transformers in computer vision tasks to attain enhanced long-term semantic awareness. Vision transformers (ViTs) have excelled in various computer vision tasks due to their superior ability to capture long-distance dependencies using the self-attention mechanism. Contemporary ViTs like Data Efficient Transformers (DeiT) can effectively learn both global semantic information and local texture information from images, achieving performance comparable to traditional CNNs. However, their impressive performance comes with a high computational cost due to very large number of parameters, hindering their deployment on devices with limited resources like smartphones, cameras, drones etc. Additionally, ViTs require a large amount of data for training to achieve performance comparable to benchmark CNN models. Therefore, we identified two key challenges in deploying ViTs on smaller form factor devices: the high computational requirements of large models and the need for extensive training data. As a solution to these challenges, we propose compressing large ViT models using Knowledge Distillation (KD), which is implemented data-free to circumvent limitations related to data availability. Additionally, we conducted experiments on object detection within the same environment in addition to classification tasks. Based on our analysis, we found that datafree knowledge distillation is an effective method to overcome both issues, enabling the deployment of ViTs on less resourceconstrained devices.
Guitar tablatures enrich the structure of traditional music notation by assigning each note to a string and fret of a guitar in a particular tuning, indicating precisely where to play the note on the instrument. The problem of generating tablature from a symbolic music representation involves inferring this string and fret assignment per note across an entire composition or performance. On the guitar, multiple string-fret assignments are possible for most pitches, which leads to a large combinatorial space that prevents exhaustive search approaches. Most modern methods use constraint-based dynamic programming to minimize some cost function (e.g.\ hand position movement). In this work, we introduce a novel deep learning solution to symbolic guitar tablature estimation. We train an encoder-decoder Transformer model in a masked language modeling paradigm to assign notes to strings. The model is first pre-trained on DadaGP, a dataset of over 25K tablatures, and then fine-tuned on a curated set of professionally transcribed guitar performances. Given the subjective nature of assessing tablature quality, we conduct a user study amongst guitarists, wherein we ask participants to rate the playability of multiple versions of tablature for the same four-bar excerpt. The results indicate our system significantly outperforms competing algorithms.
Emotional voice conversion involves modifying the pitch, spectral envelope, and other acoustic characteristics of speech to match a desired emotional state while maintaining the speaker's identity. Recent advances in EVC involve simultaneously modeling pitch and duration by exploiting the potential of sequence-to-sequence models. In this study, we focus on parallel speech generation to increase the reliability and efficiency of conversion. We introduce a duration-flexible EVC (DurFlex-EVC) that integrates a style autoencoder and a unit aligner. The previous variable-duration parallel generation model required text-to-speech alignment. We consider self-supervised model representation and discrete speech units to be the core of our parallel generation. The style autoencoder promotes content style disentanglement by separating the source style of the input features and applying them with the target style. The unit aligner encodes unit-level features by modeling emotional context. Furthermore, we enhance the style of the features with a hierarchical stylize encoder and generate high-quality Mel-spectrograms with a diffusion-based generator. The effectiveness of the approach has been validated through subjective and objective evaluations and has been demonstrated to be superior to baseline models.
The Mixture of Experts (MoE) approach is well-suited for multilingual and code-switching (CS) tasks due to its multi-expert architecture. This work introduces the DLG-MoE, a Dynamic Language Group-based MoE optimized for bilingual and CS scenarios. DLG-MoE operates based on a hierarchical routing mechanism. First, the language router explicitly models the language and dispatches the representations to the corresponding language expert groups. Subsequently, the unsupervised router within each language group implicitly models attributes beyond language, and coordinates expert routing and collaboration. The model achieves state-of-the-art (SOTA) performance while also having unparalleled flexibility. It supports different top-k inference and streaming capabilities, and can also prune the model parameters to obtain a monolingual sub-model. The Code will be released.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.