亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of low-rank rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is ``long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of a low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new spectral algorithm for recovering the singular values and left singular vectors of the original matrix $M$ based on a variant of the standard non-backtracking operator of a suitably defined bipartite weighted random graph, which we call a \textit{non-backtracking wedge operator}. When $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors. As an application, for low-rank orthogonal $k$-tensor completion, we efficiently achieve weak recovery with sample size $O(n^{k/2})$, and weak consistency with sample size $\omega(n^{k/2})$.

相關內容

A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.

Classical multi-sorted equational theories and their free algebras have been fundamental in mathematics and computer science. In this paper, we present a generalization of multi-sorted equational theories from the classical ($Set$-enriched) context to the context of enrichment in a symmetric monoidal category $V$ that is topological over $Set$. Prominent examples of such categories include: various categories of topological and measurable spaces; the categories of models of relational Horn theories without equality, including the categories of preordered sets and (extended) pseudo-metric spaces; and the categories of quasispaces (a.k.a. concrete sheaves) on concrete sites, which have recently attracted interest in the study of programming language semantics. Given such a category $V$, we define a notion of $V$-enriched multi-sorted equational theory. We show that every $V$-enriched multi-sorted equational theory $T$ has an underlying classical multi-sorted equational theory $|T|$, and that free $T$-algebras may be obtained as suitable liftings of free $|T|$-algebras. We establish explicit and concrete descriptions of free $T$-algebras, which have a convenient inductive character when $V$ is cartesian closed. We provide several examples of $V$-enriched multi-sorted equational theories, and we also discuss the close connection between these theories and the presentations of $V$-enriched algebraic theories and monads studied in recent papers by the author and Lucyshyn-Wright.

In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices $\mathcal{S}(Y)=YY^*$, where $Y=(y_{ij})$ is an $M\times N$ matrix with iid mean $0$ variance $N^{-1}$ entries. We prove a phase transition for its distribution, induced by the fatness of the tail of $y_{ij}$'s. More specifically, we assume that $y_{ij}$ is symmetrically distributed with tail probability $\mathbb{P}(|\sqrt{N}y_{ij}|\geq x)\sim x^{-\alpha}$ when $x\to \infty$, for some $\alpha\in (2,4)$. We show the following conclusions: (i). When $\alpha>\frac83$, the smallest eigenvalue follows the Tracy-Widom law on scale $N^{-\frac23}$; (ii). When $2<\alpha<\frac83$, the smallest eigenvalue follows the Gaussian law on scale $N^{-\frac{\alpha}{4}}$; (iii). When $\alpha=\frac83$, the distribution is given by an interpolation between Tracy-Widom and Gaussian; (iv). In case $\alpha\leq \frac{10}{3}$, in addition to the left edge of the MP law, a deterministic shift of order $N^{1-\frac{\alpha}{2}}$ shall be subtracted from the smallest eigenvalue, in both the Tracy-Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by \cite{ALY} which is originally done for the bulk regime of the L\'{e}vy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.

We consider the problem of approximating the solution to $A(\mu) x(\mu) = b$ for many different values of the parameter $\mu$. Here we assume $A(\mu)$ is large, sparse, and nonsingular with a nonlinear dependence on $\mu$. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of $A(\mu)$ on the interval $[-a,a]$, $a \in \mathbb{R}$. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to $x(\mu)$ for many different values of the parameter $\mu \in [-a,a]$ simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible.

We show that the VC-dimension of a graph can be computed in time $n^{\log d+1} d^{O(d)}$, where $d$ is the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently query the number of vertices that see a specific subset of vertices inside of a (small) query set. The construction of this data structure takes time $O(d2^dn)$, afterwards queries can be computed efficiently using fast M\"obius inversion. This data structure turns out to be useful for a range of tasks, especially for finding bipartite patterns in degenerate graphs, and we outline an efficient algorithms for counting the number of times specific patterns occur in a graph. The largest factor in the running time of this algorithm is $O(n^c)$, where $c$ is a parameter of the pattern we call its left covering number. Concrete applications of this algorithm include counting the number of (non-induced) bicliques in linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation of the ladder index in linear time. Finally, we supplement our theoretical results with several implementations and run experiments on more than 200 real-world datasets -- the largest of which has 8 million edges -- where we obtain interesting insights into the VC-dimension of real-world networks.

Given univariate random variables $Y_1, \ldots, Y_n$ with the $\text{Uniform}(\theta_0 - 1, \theta_0 + 1)$ distribution, the sample midrange $\frac{Y_{(n)}+Y_{(1)}}{2}$ is the MLE for $\theta_0$ and estimates $\theta_0$ with error of order $1/n$, which is much smaller compared with the $1/\sqrt{n}$ error rate of the usual sample mean estimator. However, the sample midrange performs poorly when the data has say the Gaussian $N(\theta_0, 1)$ distribution, with an error rate of $1/\sqrt{\log n}$. In this paper, we propose an estimator of the location $\theta_0$ with a rate of convergence that can, in many settings, adapt to the underlying distribution which we assume to be symmetric around $\theta_0$ but is otherwise unknown. When the underlying distribution is compactly supported, we show that our estimator attains a rate of convergence of $n^{-\frac{1}{\alpha}}$ up to polylog factors, where the rate parameter $\alpha$ can take on any value in $(0, 2]$ and depends on the moments of the underlying distribution. Our estimator is formed by the $\ell^\gamma$-center of the data, for a $\gamma\geq2$ chosen in a data-driven way -- by minimizing a criterion motivated by the asymptotic variance. Our approach can be directly applied to the regression setting where $\theta_0$ is a function of observed features and motivates the use of $\ell^\gamma$ loss function for $\gamma > 2$ in certain settings.

In this paper, under the assumption that the dimension is much larger than the sample size, i.e., $p \asymp n^{\alpha}, \alpha>1,$ we consider the (unnormalized) sample covariance matrices $Q = \Sigma^{1/2} XX^*\Sigma^{1/2}$, where $X=(x_{ij})$ is a $p \times n$ random matrix with centered i.i.d entries whose variances are $(pn)^{-1/2}$, and $\Sigma$ is the deterministic population covariance matrix. We establish two classes of central limit theorems (CLTs) for the linear spectral statistics (LSS) for $Q,$ the global CLTs on the macroscopic scales and the local CLTs on the mesoscopic scales. We prove that the LSS converge to some Gaussian processes whose mean and covariance functions depending on $\Sigma$, the ratio $p/n$ and the test functions, can be identified explicitly on both macroscopic and mesoscopic scales. We also show that even though the global CLTs depend on the fourth cumulant of $x_{ij},$ the local CLTs do not. Based on these results, we propose two classes of statistics for testing the structures of $\Sigma,$ the global statistics and the local statistics, and analyze their superior power under general local alternatives. To our best knowledge, the local LSS testing statistics which do not rely on the fourth moment of $x_{ij},$ is used for the first time in hypothesis testing while the literature mostly uses the global statistics and requires the prior knowledge of the fourth cumulant. Numerical simulations also confirm the accuracy and powerfulness of our proposed statistics and illustrate better performance compared to the existing methods in the literature.

$\newcommand{\Max}{\mathrm{Max4PC}}$ The Four point condition (4PC henceforth) is a well known condition characterising distances in trees $T$. Let $w,x,y,z$ be four vertices in $T$ and let $d_{x,y}$ denote the distance between vertices $x,y$ in $T$. The 4PC condition says that among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$ the maximum value equals the second maximum value. We define an $\binom{n}{2} \times \binom{n}{2}$ sized matrix $\Max_T$ from a tree $T$ where the rows and columns are indexed by size-2 subsets. The entry of $\Max_T$ corresponding to the row indexed by $\{w,x\}$ and column $\{y,z\}$ is the maximum value among the three terms $d_{w,x} + d_{y,z}$, $d_{w,y} + d_{x,z}$ and $d_{w,z} + d_{x,y}$. In this work, we determine basic properties of this matrix like rank, give an algorithm that outputs a family of bases, and find the determinant of $\Max_T$ when restricted to our basis. We further determine the inertia and the Smith Normal Form (SNF) of $\Max_T$.

We introduce and analyze a symmetric low-regularity scheme for the nonlinear Schr\"odinger (NLS) equation beyond classical Fourier-based techniques. We show fractional convergence of the scheme in $L^2$-norm, from first up to second order, both on the torus $\mathbb{T}^d$ and on a smooth bounded domain $\Omega \subset \mathbb{R}^d$, $d\le 3$, equipped with homogeneous Dirichlet boundary condition. The new scheme allows for a symmetric approximation to the NLS equation in a more general setting than classical splitting, exponential integrators, and low-regularity schemes (i.e. under lower regularity assumptions, on more general domains, and with fractional rates). We motivate and illustrate our findings through numerical experiments, where we witness better structure preserving properties and an improved error-constant in low-regularity regimes.

Stencil composition uses the idea of function composition, wherein two stencils with arbitrary orders of derivative are composed to obtain a stencil with a derivative order equal to sum of the orders of the composing stencils. In this paper, we show how stencil composition can be applied to form finite difference stencils in order to numerically solve partial differential equations (PDEs). We present various properties of stencil composition and investigate the relationship between the order of accuracy of the composed stencil and that of the composing stencils. We also present comparisons between the stability restrictions of composed higher-order PDEs to their compact versions and numerical experiments wherein we verify the order of accuracy by convergence tests. To demonstrate an application to PDEs, a boundary value problem involving the two-dimensional biharmonic equation is numerically solved using stencil composition and the order of accuracy is verified by performing a convergence test. The method is then applied to the Cahn-Hilliard phase-field model. In addition to sample results in 2D and 3D for this benchmark problem, the scalability, spectral properties, and sparsity is explored.

北京阿比特科技有限公司