亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a hyperbolic model for entropy dissipative system of viscous conservation laws via a flux relaxation approach. We develop numerical schemes for the resulting hyperbolic relaxation system by employing the finite-volume methodology used in the community of hyperbolic conservation laws, e.g., the generalized Riemann problem method. For fully discrete schemes for the relaxation system of scalar viscous conservation laws, we show the asymptotic preserving property in the coarse regime without resolving the relaxation scale and prove the dissipation property by using the modified equation approach. Further, we extend the idea to the compressible Navier-Stokes equations. Finally, we display the performance of our relaxation schemes by a number of numerical experiments.

相關內容

In this paper, we provide an analysis of a recently proposed multicontinuum homogenization technique. The analysis differs from those used in classical homogenization methods for several reasons. First, the cell problems in multicontinuum homogenization use constraint problems and can not be directly substituted into the differential operator. Secondly, the problem contains high contrast that remains in the homogenized problem. The homogenized problem averages the microstructure while containing the small parameter. In this analysis, we first based on our previous techniques, CEM-GMsFEM, to define a CEM-downscaling operator that maps the multicontinuum quantities to an approximated microscopic solution. Following the regularity assumption of the multicontinuum quantities, we construct a downscaling operator and the homogenized multicontinuum equations using the information of linear approximation of the multicontinuum quantities. The error analysis is given by the residual estimate of the homogenized equations and the well-posedness assumption of the homogenized equations.

The deformed energy method has shown to be a good option for dimensional synthesis of mechanisms. In this paper the introduction of some new features to such approach is proposed. First, constraints fixing dimensions of certain links are introduced in the error function of the synthesis problem. Second, requirements on distances between determinate nodes are included in the error function for the analysis of the deformed position problem. Both the overall synthesis error function and the inner analysis error function are optimized using a Sequential Quadratic Problem (SQP) approach. This also reduces the probability of branch or circuit defects. In the case of the inner function analytical derivatives are used, while in the synthesis optimization approximate derivatives have been introduced. Furthermore, constraints are analyzed under two formulations, the Euclidean distance and an alternative approach that uses the previous raised to the power of two. The latter approach is often used in kinematics, and simplifies the computation of derivatives. Some examples are provided to show the convergence order of the error function and the fulfilment of the constraints in both formulations studied under different topological situations or achieved energy levels.

Bayesian networks are widely utilised in various fields, offering elegant representations of factorisations and causal relationships. We use surjective functions to reduce the dimensionality of the Bayesian networks by combining states and study the preservation of their factorisation structure. We introduce and define corresponding notions, analyse their properties, and provide examples of highly symmetric special cases, enhancing the understanding of the fundamental properties of such reductions for Bayesian networks. We also discuss the connection between this and reductions of homogeneous and non-homogeneous Markov chains.

We present a graph-based discretization method for solving hyperbolic systems of conservation laws using discontinuous finite elements. The method is based on the convex limiting technique technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211--A3239, 2018). As such, these methods are mathematically guaranteed to be invariant-set preserving and to satisfy discrete pointwise entropy inequalities. In this paper we extend the theory for the specific case of discontinuous finite elements, incorporating the effect of boundary conditions into the formulation. From a practical point of view, the implementation of these methods is algebraic, meaning, that they operate directly on the stencil of the spatial discretization. This first paper in a sequence of two papers introduces and verifies essential building blocks for the convex limiting procedure using discontinuous Galerkin discretizations. In particular, we discuss a minimally stabilized high-order discontinuous Galerkin method that exhibits optimal convergence rates comparable to linear stabilization techniques for cell-based methods. In addition, we discuss a proper choice of local bounds for the convex limiting procedure. A follow-up contribution will focus on the high-performance implementation, benchmarking and verification of the method. We verify convergence rates on a sequence of one- and two-dimensional tests with differing regularity. In particular, we obtain optimal convergence rates for single rarefaction waves. We also propose a simple test in order to verify the implementation of boundary conditions and their convergence rates.

We study the problem of sequentially predicting properties of a probabilistic model and its next outcome over an infinite horizon, with the goal of ensuring that the predictions incur only finitely many errors with probability 1. We introduce a general framework that models such prediction problems, provide general characterizations for the existence of successful prediction rules, and demonstrate the application of these characterizations through several concrete problem setups, including hypothesis testing, online learning, and risk domination. In particular, our characterizations allow us to recover the findings of Dembo and Peres (1994) with simple and elementary proofs, and offer a partial resolution to an open problem posed therein.

Collecting large quantities of high-quality data is often prohibitively expensive or impractical, and a crucial bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources like public datasets, data collected under different circumstances, or synthesized by generative models. Blurring distinctions, we refer to such data as `surrogate data'. We define a simple scheme for integrating surrogate data into training and use both theoretical models and empirical studies to explore its behavior. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution; $(ii)$ In order to reap this benefit, it is crucial to use optimally weighted empirical risk minimization; $(iii)$ The test error of models trained on mixtures of real and surrogate data is well described by a scaling law. This can be used to predict the optimal weighting and the gain from surrogate data.

Researchers would often like to leverage data from a collection of sources (e.g., primary studies in a meta-analysis) to estimate causal effects in a target population of interest. However, traditional meta-analytic methods do not produce causally interpretable estimates for a well-defined target population. In this paper, we present the CausalMetaR R package, which implements efficient and robust methods to estimate causal effects in a given internal or external target population using multi-source data. The package includes estimators of average and subgroup treatment effects for the entire target population. To produce efficient and robust estimates of causal effects, the package implements doubly robust and non-parametric efficient estimators and supports using flexible data-adaptive (e.g., machine learning techniques) methods and cross-fitting techniques to estimate the nuisance models (e.g., the treatment model, the outcome model). We describe the key features of the package and demonstrate how to use the package through an example.

We present and analyze a new finite volume scheme of Gudonov-type for a nonlinear scalar conservation law whose flux function has a discontinuous coefficient due to time-dependent changes in its sign along a Lipschitz continuous curve.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

In this paper, we consider the numerical approximation of a time-fractional stochastic Cahn--Hilliard equation driven by an additive fractionally integrated Gaussian noise. The model involves a Caputo fractional derivative in time of order $\alpha\in(0,1)$ and a fractional time-integral noise of order $\gamma\in[0,1]$. The numerical scheme approximates the model by a piecewise linear finite element method in space and a convolution quadrature in time (for both time-fractional operators), along with the $L^2$-projection for the noise. We carefully investigate the spatially semidiscrete and fully discrete schemes, and obtain strong convergence rates by using clever energy arguments. The temporal H\"older continuity property of the solution played a key role in the error analysis. Unlike the stochastic Allen--Cahn equation, the presence of the unbounded elliptic operator in front of the cubic nonlinearity in the underlying model adds complexity and challenges to the error analysis. To overcome these difficulties, several new techniques and error estimates are developed. The study concludes with numerical examples that validate the theoretical findings.

北京阿比特科技有限公司