Control variates are a well-established tool to reduce the variance of Monte Carlo estimators. However, for large-scale problems including high-dimensional and large-sample settings, their advantages can be outweighed by a substantial computational cost. This paper considers control variates based on Stein operators, presenting a framework that encompasses and generalizes existing approaches that use polynomials, kernels and neural networks. A learning strategy based on minimising a variational objective through stochastic optimization is proposed, leading to scalable and effective control variates. Novel theoretical results are presented to provide insight into the variance reduction that can be achieved, and an empirical assessment, including applications to Bayesian inference, is provided in support.
Model-free reinforcement learning (RL) is capable of learning control policies for high-dimensional, complex robotic tasks, but tends to be data-inefficient. Model-based RL tends to be more data-efficient but often suffers from learning a high-dimensional model that is good enough for policy improvement. This limits its use to learning simple models for restrictive domains. Optimal control generates solutions without collecting any data, assuming an accurate model of the system and environment is known, which is often true in many control theory applications. However, optimal control cannot be scaled to problems with a high-dimensional state space. In this paper, we propose a novel approach to alleviate data inefficiency of model-free RL in high-dimensional problems by warm-starting the learning process using a lower-dimensional model-based solution. Particularly, we initialize a baseline function for the high-dimensional RL problem via supervision from a lower-dimensional value function, which can be obtained by solving a lower-dimensional problem with a known, approximate model using "classical" techniques such as value iteration or optimal control. Therefore, our approach implicitly exploits the model priors from simplified problem space to facilitate the policy learning in high-dimensional RL tasks. We demonstrate our approach on two representative robotic learning tasks and observe significant improvement in policy performance and learning efficiency. We also evaluate our method empirically with a third task.
Bayesian Optimization (BO) is a method for globally optimizing black-box functions. While BO has been successfully applied to many scenarios, developing effective BO algorithms that scale to functions with high-dimensional domains is still a challenge. Optimizing such functions by vanilla BO is extremely time-consuming. Alternative strategies for high-dimensional BO that are based on the idea of embedding the high-dimensional space to the one with low dimension are sensitive to the choice of the embedding dimension, which needs to be pre-specified. We develop a new computationally efficient high-dimensional BO method that exploits variable selection. Our method is able to automatically learn axis-aligned sub-spaces, i.e. spaces containing selected variables, without the demand of any pre-specified hyperparameters. We theoretically analyze the computational complexity of our algorithm and derive the regret bound. We empirically show the efficacy of our method on several synthetic and real problems.
In this paper, we propose a unified convergence analysis for a class of generic shuffling-type gradient methods for solving finite-sum optimization problems. Our analysis works with any sampling without replacement strategy and covers many known variants such as randomized reshuffling, deterministic or randomized single permutation, and cyclic and incremental gradient schemes. We focus on two different settings: strongly convex and nonconvex problems, but also discuss the non-strongly convex case. Our main contribution consists of new non-asymptotic and asymptotic convergence rates for a wide class of shuffling-type gradient methods in both nonconvex and convex settings. We also study uniformly randomized shuffling variants with different learning rates and model assumptions. While our rate in the nonconvex case is new and significantly improved over existing works under standard assumptions, the rate on the strongly convex one matches the existing best-known rates prior to this paper up to a constant factor without imposing a bounded gradient condition. Finally, we empirically illustrate our theoretical results via two numerical examples: nonconvex logistic regression and neural network training examples. As byproducts, our results suggest some appropriate choices for diminishing learning rates in certain shuffling variants.
Control variates are post-processing tools for Monte Carlo estimators which can lead to significant variance reduction. This approach usually requires a large number of samples, which can be prohibitive for applications where sampling from a posterior or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple integrals jointly. This allows the transfer of information across integration tasks, and hence reduces the overall requirement for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling and model evidence computation through thermodynamic integration.
There has been considerable recent interest in Bayesian modeling of high-dimensional networks via latent space approaches. When the number of nodes increases, estimation based on Markov Chain Monte Carlo can be extremely slow and show poor mixing, thereby motivating research on alternative algorithms that scale well in high-dimensional settings. In this article, we focus on the latent factor model, a widely used approach for latent space modeling of network data. We develop scalable algorithms to conduct approximate Bayesian inference via stochastic optimization. Leveraging sparse representations of network data, the proposed algorithms show massive computational and storage benefits, and allow to conduct inference in settings with thousands of nodes.
This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with `1-penalization to handle high-dimensional covariates, and the combination is new in the literature. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.