This paper presents a unique outdoor aerial visual-inertial-LiDAR dataset captured using a multi-sensor payload to promote the global navigation satellite system (GNSS)-denied navigation research. The dataset features flight distances ranging from 300m to 5km, collected using a DJI M600 hexacopter drone and the National Research Council (NRC) Bell 412 Advanced Systems Research Aircraft (ASRA). The dataset consists of hardware synchronized monocular images, IMU measurements, 3D LiDAR point-clouds, and high-precision real-time kinematic (RTK)-GNSS based ground truth. Ten datasets were collected as ROS bags over 100 mins of outdoor environment footage ranging from urban areas, highways, hillsides, prairies, and waterfronts. The datasets were collected to facilitate the development of visual-inertial-LiDAR odometry and mapping algorithms, visual-inertial navigation algorithms, object detection, segmentation, and landing zone detection algorithms based upon real-world drone and full-scale helicopter data. All the datasets contain raw sensor measurements, hardware timestamps, and spatio-temporally aligned ground truth. The intrinsic and extrinsic calibrations of the sensors are also provided along with raw calibration datasets. A performance summary of state-of-the-art methods applied on the datasets is also provided.
In this paper, we present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Specifically, we adopt Unsigned Distance Field (UDF) as the surface representation, as it excels in handling arbitrary topologies, enabling the generation of complex shapes. While the prior methods explored shape generation with different representations, they suffer from limited topologies and geometry details. Moreover, it's non-trivial to directly extend prior diffusion models to UDF because they lack spatial continuity due to the discrete volume structure. However, UDF requires accurate gradients for mesh extraction and learning. To tackle the issues, we first leverage a point-based auto-encoder to learn a compact latent space, which supports gradient querying for any input point through differentiation to effectively capture intricate geometry at a high resolution. Since the learning difficulty for various shapes can differ, a curriculum learning strategy is employed to efficiently embed various surfaces, enhancing the whole embedding process. With pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Our approach demonstrates superior performance in shape generation across multiple modalities and conducts extensive experiments in unconditional generation, category conditional generation, 3D reconstruction from images, and text-to-shape tasks.
Contrastive pretraining of image-text foundation models, such as CLIP, demonstrated excellent zero-shot performance and improved robustness on a wide range of downstream tasks. However, these models utilize large transformer-based encoders with significant memory and latency overhead which pose challenges for deployment on mobile devices. In this work, we introduce MobileCLIP -- a new family of efficient image-text models optimized for runtime performance along with a novel and efficient training approach, namely multi-modal reinforced training. The proposed training approach leverages knowledge transfer from an image captioning model and an ensemble of strong CLIP encoders to improve the accuracy of efficient models. Our approach avoids train-time compute overhead by storing the additional knowledge in a reinforced dataset. MobileCLIP sets a new state-of-the-art latency-accuracy tradeoff for zero-shot classification and retrieval tasks on several datasets. Our MobileCLIP-S2 variant is 2.3$\times$ faster while more accurate compared to previous best CLIP model based on ViT-B/16. We further demonstrate the effectiveness of our multi-modal reinforced training by training a CLIP model based on ViT-B/16 image backbone and achieving +2.9% average performance improvement on 38 evaluation benchmarks compared to the previous best. Moreover, we show that the proposed approach achieves 10$\times$-1000$\times$ improved learning efficiency when compared with non-reinforced CLIP training.
The advancements in automatic text-to-3D generation have been remarkable. Most existing methods use pre-trained text-to-image diffusion models to optimize 3D representations like Neural Radiance Fields (NeRFs) via latent-space denoising score matching. Yet, these methods often result in artifacts and inconsistencies across different views due to their suboptimal optimization approaches and limited understanding of 3D geometry. Moreover, the inherent constraints of NeRFs in rendering crisp geometry and stable textures usually lead to a two-stage optimization to attain high-resolution details. This work proposes holistic sampling and smoothing approaches to achieve high-quality text-to-3D generation, all in a single-stage optimization. We compute denoising scores in the text-to-image diffusion model's latent and image spaces. Instead of randomly sampling timesteps (also referred to as noise levels in denoising score matching), we introduce a novel timestep annealing approach that progressively reduces the sampled timestep throughout optimization. To generate high-quality renderings in a single-stage optimization, we propose regularization for the variance of z-coordinates along NeRF rays. To address texture flickering issues in NeRFs, we introduce a kernel smoothing technique that refines importance sampling weights coarse-to-fine, ensuring accurate and thorough sampling in high-density regions. Extensive experiments demonstrate the superiority of our method over previous approaches, enabling the generation of highly detailed and view-consistent 3D assets through a single-stage training process.
This paper presents Sim-Suction, a robust object-aware suction grasp policy for mobile manipulation platforms with dynamic camera viewpoints, designed to pick up unknown objects from cluttered environments. Suction grasp policies typically employ data-driven approaches, necessitating large-scale, accurately-annotated suction grasp datasets. However, the generation of suction grasp datasets in cluttered environments remains underexplored, leaving uncertainties about the relationship between the object of interest and its surroundings. To address this, we propose a benchmark synthetic dataset, Sim-Suction-Dataset, comprising 500 cluttered environments with 3.2 million annotated suction grasp poses. The efficient Sim-Suction-Dataset generation process provides novel insights by combining analytical models with dynamic physical simulations to create fast and accurate suction grasp pose annotations. We introduce Sim-Suction-Pointnet to generate robust 6D suction grasp poses by learning point-wise affordances from the Sim-Suction-Dataset, leveraging the synergy of zero-shot text-to-segmentation. Real-world experiments for picking up all objects demonstrate that Sim-Suction-Pointnet achieves success rates of 96.76%, 94.23%, and 92.39% on cluttered level 1 objects (prismatic shape), cluttered level 2 objects (more complex geometry), and cluttered mixed objects, respectively. The Sim-Suction policies outperform state-of-the-art benchmarks tested by approximately 21% in cluttered mixed scenes.
This paper addresses the challenge of point-supervised temporal action detection, in which only one frame per action instance is annotated in the training set. Self-training aims to provide supplementary supervision for the training process by generating pseudo-labels (action proposals) from a base model. However, most current methods generate action proposals by applying manually designed thresholds to action classification probabilities and treating adjacent snippets as independent entities. As a result, these methods struggle to generate complete action proposals, exhibit sensitivity to fluctuations in action classification scores, and generate redundant and overlapping action proposals. This paper proposes a novel framework termed ADM-Loc, which stands for Actionness Distribution Modeling for point-supervised action Localization. ADM-Loc generates action proposals by fitting a composite distribution, comprising both Gaussian and uniform distributions, to the action classification signals. This fitting process is tailored to each action class present in the video and is applied separately for each action instance, ensuring the distinctiveness of their distributions. ADM-Loc significantly enhances the alignment between the generated action proposals and ground-truth action instances and offers high-quality pseudo-labels for self-training. Moreover, to model action boundary snippets, it enforces consistency in action classification scores during training by employing Gaussian kernels, supervised with the proposed loss functions. ADM-Loc outperforms the state-of-the-art point-supervised methods on THUMOS14 and ActivityNet-v1.2 datasets.
This paper presents a novel method to generate textures for 3D models given text prompts and 3D meshes. Additional depth information is taken into account to perform the Score Distillation Sampling (SDS) process [28] with depth conditional Stable Diffusion [34]. We ran our model over the open-source dataset Objaverse [7] and conducted a user study to compare the results with those of various 3D texturing methods. We have shown that our model can generate more satisfactory results and produce various art styles for the same object. In addition, we achieved faster time when generating textures of comparable quality. We also conduct thorough ablation studies of how different factors may affect generation quality, including sampling steps, guidance scale, negative prompts, data augmentation, elevation range, and alternatives to SDS.
In this paper, we present a dataset for the computational study of a number of Modern Greek dialects. It consists of raw text data from four dialects of Modern Greek, Cretan, Pontic, Northern Greek and Cypriot Greek. The dataset is of considerable size, albeit imbalanced, and presents the first attempt to create large scale dialectal resources of this type for Modern Greek dialects. We then use the dataset to perform dialect idefntification. We experiment with traditional ML algorithms, as well as simple DL architectures. The results show very good performance on the task, potentially revealing that the dialects in question have distinct enough characteristics allowing even simple ML models to perform well on the task. Error analysis is performed for the top performing algorithms showing that in a number of cases the errors are due to insufficient dataset cleaning.
We introduce a multiple target optimization framework for DP-SGD referred to as pro-active DP. In contrast to traditional DP accountants, which are used to track the expenditure of privacy budgets, the pro-active DP scheme allows one to {\it a-priori} select parameters of DP-SGD based on a fixed privacy budget (in terms of $\epsilon$ and $\delta$) in such a way to optimize the anticipated utility (test accuracy) the most. To achieve this objective, we first propose significant improvements to the moment account method, presenting a closed-form $(\epsilon,\delta)$-DP guarantee that connects all parameters in the DP-SGD setup. Generally, DP-SGD is $(\epsilon\leq 1/2,\delta=1/N)$-DP if $\sigma=\sqrt{2(\epsilon +\ln(1/\delta))/\epsilon}$ with $T$ at least $\approx 2k^2/\epsilon$ and $(2/e)^2k^2-1/2\geq \ln(N)$, where $T$ is the total number of rounds, and $K=kN$ is the total number of gradient computations where $k$ measures $K$ in number of epochs of size $N$ of the local data set. We prove that our expression is close to tight in that if $T$ is more than a constant factor $\approx 4$ smaller than the lower bound $\approx 2k^2/\epsilon$, then the $(\epsilon,\delta)$-DP guarantee is violated. Our enhanced DP theory allows us to create a utility graph and DP calculator. These tools link privacy and utility objectives and search for optimal experiment setups, efficiently taking into account both accuracy and privacy objectives, as well as implementation goals. We furnish a comprehensive implementation flow of our proactive DP, with rigorous experiments to showcase the proof-of-concept.
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images even with little visual overlap, while simultaneously estimating the relative camera poses in ~1.3 seconds on a single A100 GPU. PF-LRM is a highly scalable method utilizing the self-attention blocks to exchange information between 3D object tokens and 2D image tokens; we predict a coarse point cloud for each view, and then use a differentiable Perspective-n-Point (PnP) solver to obtain camera poses. When trained on a huge amount of multi-view posed data of ~1M objects, PF-LRM shows strong cross-dataset generalization ability, and outperforms baseline methods by a large margin in terms of pose prediction accuracy and 3D reconstruction quality on various unseen evaluation datasets. We also demonstrate our model's applicability in downstream text/image-to-3D task with fast feed-forward inference. Our project website is at: //totoro97.github.io/pf-lrm .
This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.