亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present the first constant-approximation algorithm for {\em budgeted sweep coverage problem} (BSC). The BSC involves designing routes for a number of mobile sensors (a.k.a. robots) to periodically collect information as much as possible from points of interest (PoIs). To approach this problem, we propose to first examine the {\em multi-orienteering problem} (MOP). The MOP aims to find a set of $m$ vertex-disjoint paths that cover as many vertices as possible while adhering to a budget constraint $B$. We develop a constant-approximation algorithm for MOP and utilize it to achieve a constant-approximation for BSC. Our findings open new possibilities for optimizing mobile sensor deployments and related combinatorial optimization tasks.

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

In this paper, we introduce a new projection-free algorithm for Online Convex Optimization (OCO) with a state-of-the-art regret guarantee among separation-based algorithms. Existing projection-free methods based on the classical Frank-Wolfe algorithm achieve a suboptimal regret bound of $O(T^{3/4})$, while more recent separation-based approaches guarantee a regret bound of $O(\kappa \sqrt{T})$, where $\kappa$ denotes the asphericity of the feasible set, defined as the ratio of the radii of the containing and contained balls. However, for ill-conditioned sets, $\kappa$ can be arbitrarily large, potentially leading to poor performance. Our algorithm achieves a regret bound of $\widetilde{O}(\sqrt{dT} + \kappa d)$, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per round. Crucially, the main term in the bound, $\widetilde{O}(\sqrt{d T})$, is independent of $\kappa$, addressing the limitations of previous methods. Additionally, as a by-product of our analysis, we recover the $O(\kappa \sqrt{T})$ regret bound of existing OCO algorithms with a more straightforward analysis and improve the regret bound for projection-free online exp-concave optimization. Finally, for constrained stochastic convex optimization, we achieve a state-of-the-art convergence rate of $\widetilde{O}(\sigma/\sqrt{T} + \kappa d/T)$, where $\sigma$ represents the noise in the stochastic gradients, while requiring only $\widetilde{O}(1)$ calls to a separation oracle per iteration.

This paper presents Federated Learning with Adaptive Monitoring and Elimination (FLAME), a novel solution capable of detecting and mitigating concept drift in Federated Learning (FL) Internet of Things (IoT) environments. Concept drift poses significant challenges for FL models deployed in dynamic and real-world settings. FLAME leverages an FL architecture, considers a real-world FL pipeline, and proves capable of maintaining model performance and accuracy while addressing bandwidth and privacy constraints. Introducing various features and extensions on previous works, FLAME offers a robust solution to concept drift, significantly reducing computational load and communication overhead. Compared to well-known lightweight mitigation methods, FLAME demonstrates superior performance in maintaining high F1 scores and reducing resource utilisation in large-scale IoT deployments, making it a promising approach for real-world applications.

In this paper, we propose a new approach to train deep learning models using game theory concepts including Generative Adversarial Networks (GANs) and Adversarial Training (AT) where we deploy a double-oracle framework using best response oracles. GAN is essentially a two-player zero-sum game between the generator and the discriminator. The same concept can be applied to AT with attacker and classifier as players. Training these models is challenging as a pure Nash equilibrium may not exist and even finding the mixed Nash equilibrium is difficult as training algorithms for both GAN and AT have a large-scale strategy space. Extending our preliminary model DO-GAN, we propose the methods to apply the double oracle framework concept to Adversarial Neural Architecture Search (NAS for GAN) and Adversarial Training (NAS for AT) algorithms. We first generalize the players' strategies as the trained models of generator and discriminator from the best response oracles. We then compute the meta-strategies using a linear program. For scalability of the framework where multiple network models of best responses are stored in the memory, we prune the weakly-dominated players' strategies to keep the oracles from becoming intractable. Finally, we conduct experiments on MNIST, CIFAR-10 and TinyImageNet for DONAS-GAN. We also evaluate the robustness under FGSM and PGD attacks on CIFAR-10, SVHN and TinyImageNet for DONAS-AT. We show that all our variants have significant improvements in both subjective qualitative evaluation and quantitative metrics, compared with their respective base architectures.

In this paper, we propose a novel unsupervised text-to-speech acoustic model training scheme, named UTTS, which does not require text-audio pairs. UTTS is a multi-speaker speech synthesizer that supports zero-shot voice cloning, it is developed from a perspective of disentangled speech representation learning. The framework offers a flexible choice of a speaker's duration model, timbre feature (identity) and content for TTS inference. We leverage recent advancements in self-supervised speech representation learning as well as speech synthesis front-end techniques for system development. Specifically, we employ our recently formulated Conditional Disentangled Sequential Variational Auto-encoder (C-DSVAE) as the backbone UTTS AM, which offers well-structured content representations given unsupervised alignment (UA) as condition during training. For UTTS inference, we utilize a lexicon to map input text to the phoneme sequence, which is expanded to the frame-level forced alignment (FA) with a speaker-dependent duration model. Then, we develop an alignment mapping module that converts FA to UA. Finally, the C-DSVAE, serving as the self-supervised TTS AM, takes the predicted UA and a target speaker embedding to generate the mel spectrogram, which is ultimately converted to waveform with a neural vocoder. We show how our method enables speech synthesis without using a paired TTS corpus in AM development stage. Experiments demonstrate that UTTS can synthesize speech of high naturalness and intelligibility measured by human and objective evaluations. Audio samples are available at our demo page //neurtts.github.io/utts\_demo/.

This paper presents approaches to compute sparse solutions of Generalized Singular Value Problem (GSVP). The GSVP is regularized by $\ell_1$-norm and $\ell_q$-penalty for $0<q<1$, resulting in the $\ell_1$-GSVP and $\ell_q$-GSVP formulations. The solutions of these problems are determined by applying the proximal gradient descent algorithm with a fixed step size. The inherent sparsity levels within the computed solutions are exploited for feature selection, and subsequently, binary classification with non-parallel Support Vector Machines (SVM). For our feature selection task, SVM is integrated into the $\ell_1$-GSVP and $\ell_q$-GSVP frameworks to derive the $\ell_1$-GSVPSVM and $\ell_q$-GSVPSVM variants. Machine learning applications to cancer detection are considered. We remarkably report near-to-perfect balanced accuracy across breast and ovarian cancer datasets using a few selected features.

This paper presents Deformable Neural Vessel Representations (DeNVeR), an unsupervised approach for vessel segmentation in X-ray videos without annotated ground truth. DeNVeR uses optical flow and layer separation, enhancing segmentation accuracy and adaptability through test-time training. A key component of our research is the introduction of the XACV dataset, the first X-ray angiography coronary video dataset with high-quality, manually labeled segmentation ground truth. Our evaluation demonstrates that DeNVeR outperforms current state-of-the-art methods in vessel segmentation. This paper marks an advance in medical imaging, providing a robust, data-efficient tool for disease diagnosis and treatment planning and setting a new standard for future research in video vessel segmentation. See our project page for video results at //kirito878.github.io/DeNVeR/.

I present a replication and, to some extent, a refutation of key results published by Zhong, Zhang, Li, Dai, & Yang in their 2022 paper "Species coexistence in spatial cyclic game of five species" (Chaos, Solitons and Fractals, 156: 111806), where ecosystem species coexistence was explored via simulation studies of the evolutionary spatial cyclic game (ESCG) Rock-Paper-Scissors-Lizard-Spock (RPSLS) with certain predator-prey relationships removed from the game's "interaction structure", i.e. with specific arcs ablated in the ESCG's dominance network, and with the ESCG run for 100,000 Monte Carlo Steps (MCS) to identify its asymptotic behaviors. I replicate the results presented by Zhong et al. for interaction structures with one, two, three, and four arcs ablated from the dominance network. I then empirically demonstrate that the dynamics of the RPSLS ESCG have sufficiently long time constants that the true asymptotic outcomes can often only be identified after running the ablated ESCG for 10,000,000MCS or longer, and that the true long-term outcomes can be markedly less diverse than those reported by Zhong et al. as asymptotic. Finally I demonstrate that, when run for sufficiently many MCS, the original unablated RPSLS system exhibits essentially the same asymptotic outcomes as the ablated RPSLS systems, and in this sense the only causal effect of the ablations is to alter the time required for the system to converge to the long-term asymptotic states that the unablated system eventually settles to anyhow.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司