亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

From serving a cup of coffee to carefully rearranging delicate items, stable object placement is a crucial skill for future robots. This skill is challenging due to the required accuracy, which is difficult to achieve under geometric uncertainty. We leverage differentiable contact dynamics to develop a principled method for stable object placement under geometric uncertainty. We estimate the geometric uncertainty by minimizing the discrepancy between the force-torque sensor readings and the model predictions through gradient descent. We further keep track of a belief over multiple possible geometric parameters to mitigate the gradient-based method's sensitivity to the initialization. We verify our approach in the real world on various geometric uncertainties, including the in-hand pose uncertainty of the grasped object, the object's shape uncertainty, and the environment's shape uncertainty.

相關內容

Time series foundation models have demonstrated strong performance in zero-shot learning, making them well-suited for predicting rapidly evolving patterns in real-world applications where relevant training data are scarce. However, most of these models rely on the Transformer architecture, which incurs quadratic complexity as input length increases. To address this, we introduce TSMamba, a linear-complexity foundation model for time series forecasting built on the Mamba architecture. The model captures temporal dependencies through both forward and backward Mamba encoders, achieving high prediction accuracy. To reduce reliance on large datasets and lower training costs, TSMamba employs a two-stage transfer learning process that leverages pretrained Mamba LLMs, allowing effective time series modeling with a moderate training set. In the first stage, the forward and backward backbones are optimized via patch-wise autoregressive prediction; in the second stage, the model trains a prediction head and refines other components for long-term forecasting. While the backbone assumes channel independence to manage varying channel numbers across datasets, a channel-wise compressed attention module is introduced to capture cross-channel dependencies during fine-tuning on specific multivariate datasets. Experiments show that TSMamba's zero-shot performance is comparable to state-of-the-art time series foundation models, despite using significantly less training data. It also achieves competitive or superior full-shot performance compared to task-specific prediction models. The code will be made publicly available.

With the advent of AI-based coding engines, it is possible to convert natural language requirements to executable code in standard programming languages. However, AI-generated code can be unreliable, and the natural language requirements driving this code may be ambiguous. In other words, the intent may not be accurately captured in the code generated from AI-coding engines like Copilot. The goal of our work is to discover the programmer intent, while generating code which conforms to the intent and a proof of this conformance. Our approach to intent discovery is powered by a novel repair engine called program-proof co-evolution, where the object of repair is a tuple (code, logical specification, test) generated by an LLM from the same natural language description. The program and the specification capture the initial operational and declarative description of intent, while the test represents a concrete, albeit partial, understanding of the intent. Our objective is to achieve consistency between the program, the specification, and the test by incrementally refining our understanding of the user intent. Reaching consistency through this repair process provides us with a formal, logical description of the intent, which is then translated back into natural language for the developer's inspection. The resultant intent description is now unambiguous, though expressed in natural language. We demonstrate how the unambiguous intent discovered through our approach increases the percentage of verifiable auto-generated programs on a recently proposed dataset in the Dafny programming language.

We present a method to detect departures from business-justified workflows among support agents. Our goal is to assist auditors in identifying agent actions that cannot be explained by the activity within their surrounding context, where normal activity patterns are established from historical data. We apply our method to help audit millions of actions of over three thousand support agents. We collect logs from the tools used by support agents and construct a bipartite graph of Actions and Entities representing all the actions of the agents, as well as background information about entities. From this graph, we sample subgraphs rooted on security-significant actions taken by the agents. Each subgraph captures the relevant context of the root action in terms of other actions, entities and their relationships. We then prioritize the rooted-subgraphs for auditor review using feed-forward and graph neural networks, as well as nearest neighbors techniques. To alleviate the issue of scarce labeling data, we use contrastive learning and domain-specific data augmentations. Expert auditors label the top ranked subgraphs as ``worth auditing" or ``not worth auditing" based on the company's business policies. This system finds subgraphs that are worth auditing with high enough precision to be used in production.

The adoption of increasingly complex deep models has fueled an urgent need for insight into how these models make predictions. Counterfactual explanations form a powerful tool for providing actionable explanations to practitioners. Previously, counterfactual explanation methods have been designed by traversing the latent space of generative models. Yet, these latent spaces are usually greatly simplified, with most of the data distribution complexity contained in the decoder rather than the latent embedding. Thus, traversing the latent space naively without taking the nonlinear decoder into account can lead to unnatural counterfactual trajectories. We introduce counterfactual explanations obtained using a Riemannian metric pulled back via the decoder and the classifier under scrutiny. This metric encodes information about the complex geometric structure of the data and the learned representation, enabling us to obtain robust counterfactual trajectories with high fidelity, as demonstrated by our experiments in real-world tabular datasets.

Human impressions of robot performance are often measured through surveys. As a more scalable and cost-effective alternative, we investigate the possibility of predicting people's impressions of robot behavior using non-verbal behavioral cues and machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in a VR simulation, together with impressions of robot performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression features, and features that describe the navigation behavior of the robot and pedestrians). Our results suggest that facial expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques showed promise because they outperformed humans' predictions of robot performance in most cases. Further, when predicting robot performance as a binary classification task on unseen users' data, the F1 Score of machine learning models more than doubled in comparison to predicting performance on a 5-point scale. This suggested that the models can have good generalization capabilities, although they are better at telling the directionality of robot performance than predicting exact performance ratings. Based on our findings in simulation, we conducted a real-world demonstration in which a mobile robot uses a machine learning model to predict how a human that follows it perceives it. Finally, we discuss the implications of our results for implementing such supervised learning models in real-world navigation scenarios.

Federated Graph Learning (FGL) aims to collaboratively and privately optimize graph models on divergent data for different tasks. A critical challenge in FGL is to enable effective yet efficient federated optimization against multifaceted graph heterogeneity to enhance mutual performance. However, existing FGL works primarily address graph data heterogeneity and perform incapable of graph task heterogeneity. To address the challenge, we propose a Federated Graph Prompt Learning (FedGPL) framework to efficiently enable prompt-based asymmetric graph knowledge transfer between multifaceted heterogeneous federated participants. Generally, we establish a split federated framework to preserve universal and domain-specific graph knowledge, respectively. Moreover, we develop two algorithms to eliminate task and data heterogeneity for advanced federated knowledge preservation. First, a Hierarchical Directed Transfer Aggregator (HiDTA) delivers cross-task beneficial knowledge that is hierarchically distilled according to the directional transferability. Second, a Virtual Prompt Graph (VPG) adaptively generates graph structures to enhance data utility by distinguishing dominant subgraphs and neutralizing redundant ones. We conduct theoretical analyses and extensive experiments to demonstrate the significant accuracy and efficiency effectiveness of FedGPL against multifaceted graph heterogeneity compared to state-of-the-art baselines on large-scale federated graph datasets.

While sequential recommendation achieves significant progress on capturing user-item transition patterns, transferring such large-scale recommender systems remains challenging due to the disjoint user and item groups across domains. In this paper, we propose a vector quantized meta learning for transferable sequential recommenders (MetaRec). Without requiring additional modalities or shared information across domains, our approach leverages user-item interactions from multiple source domains to improve the target domain performance. To solve the input heterogeneity issue, we adopt vector quantization that maps item embeddings from heterogeneous input spaces to a shared feature space. Moreover, our meta transfer paradigm exploits limited target data to guide the transfer of source domain knowledge to the target domain (i.e., learn to transfer). In addition, MetaRec adaptively transfers from multiple source tasks by rescaling meta gradients based on the source-target domain similarity, enabling selective learning to improve recommendation performance. To validate the effectiveness of our approach, we perform extensive experiments on benchmark datasets, where MetaRec consistently outperforms baseline methods by a considerable margin.

We link and extend two approaches to estimating time-varying treatment effects on repeated continuous outcomes--time-varying Difference in Differences (DiD; see Roth et al. (2023) and Chaisemartin et al. (2023) for reviews) and Structural Nested Mean Models (SNMMs; see Vansteelandt and Joffe (2014) for a review). In particular, we show that SNMMs, which were previously only known to be nonparametrically identified under a no unobserved confounding assumption, are also identified under a generalized version of the parallel trends assumption typically used to justify time-varying DiD methods. Because SNMMs model a broader set of causal estimands, our results allow practitioners of existing time-varying DiD approaches to address additional types of substantive questions under similar assumptions. SNMMs enable estimation of time-varying effect heterogeneity, lasting effects of a `blip' of treatment at a single time point, effects of sustained interventions (possibly on continuous or multi-dimensional treatments) when treatment repeatedly changes value in the data, controlled direct effects, effects of dynamic treatment strategies that depend on covariate history, and more. Our results also allow analysts who apply SNMMs under the no unobserved confounding assumption to estimate some of the same causal effects under alternative identifying assumptions. We provide a method for sensitivity analysis to violations of our parallel trends assumption. We further explain how to estimate optimal treatment regimes via optimal regime SNMMs under parallel trends assumptions plus an assumption that there is no effect modification by unobserved confounders. Finally, we illustrate our methods with real data applications estimating effects of Medicaid expansion on uninsurance rates, effects of floods on flood insurance take-up, and effects of sustained changes in temperature on crop yields.

HIVE4MAT is a linked data interactive application for navigating ontologies of value to materials science. HIVE enables automatic indexing of textual resources with standardized terminology. This article presents the motivation underlying HIVE4MAT, explains the system architecture, reports on two evaluations, and discusses future plans.

As data emerges as a vital driver of technological and economic advancements, a key challenge is accurately quantifying its value in algorithmic decision-making. The Shapley value, a well-established concept from cooperative game theory, has been widely adopted to assess the contribution of individual data sources in supervised machine learning. However, its symmetry axiom assumes all players in the cooperative game are homogeneous, which overlooks the complex structures and dependencies present in real-world datasets. To address this limitation, we extend the traditional data Shapley framework to asymmetric data Shapley, making it flexible enough to incorporate inherent structures within the datasets for structure-aware data valuation. We also introduce an efficient $k$-nearest neighbor-based algorithm for its exact computation. We demonstrate the practical applicability of our framework across various machine learning tasks and data market contexts. The code is available at: //github.com/xzheng01/Asymmetric-Data-Shapley.

北京阿比特科技有限公司