亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims to propose the quality of experience (QoE) models based on the expectation and/or the perception of 5G users to evaluate for mean opinion score (MOS) for real-time or interactive services/applications with high reliability. Therefore, Based on the fundamental QoE concept, the analytic hierarchy process (AHP) decision making technique has been applied.

相關內容

Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.

This paper designs a simple, efficient and truthful mechanism to to elicit self-evaluations about items jointly owned by owners. A key application of this mechanism is to improve the peer review of large scientific conferences where a paper often has multiple authors and many authors have multiple papers. Our mechanism is designed to generate an entirely new source of review data truthfully elicited from paper owners, and can be used to augment the traditional approach of eliciting review data only from peer reviewers. Our approach starts by partitioning all submissions of a conference into disjoint blocks, each of which shares a common set of co-authors. We then elicit the ranking of the submissions from each author and employ isotonic regression to produce adjusted review scores that align with both the reported ranking and the raw review scores. Under certain conditions, truth-telling by all authors is a Nash equilibrium for any valid partition of the overlapping ownership sets. We prove that to ensure truthfulness for such isotonic regression based mechanisms, partitioning the authors into blocks and eliciting only ranking information independently from each block is necessary. This leave the optimization of block partition as the only room for maximizing the estimation efficiency of our mechanism, which is a computationally intractable optimization problem in general. Fortunately, we develop a nearly linear-time greedy algorithm that provably finds a performant partition with appealing robust approximation guarantees. Extensive experiments on both synthetic data and real-world conference review data demonstrate the effectiveness of this owner-assisted calibration mechanism.

This paper presents the design and implementation of a self-reconfigurable V-shape formation controller for multiple unmanned aerial vehicles (UAVs) navigating through narrow spaces in a dense obstacle environment. The selection of the V-shape formation is motivated by its maneuverability and visibility advantages. The main objective is to develop an effective formation control strategy that allows UAVs to autonomously adjust their positions to form the desired formation while navigating through obstacles. To achieve this, we propose a distributed behavior-based control algorithm that combines the behaviors designed for individual UAVs so that they together navigate the UAVs to their desired positions. The reconfiguration process is automatic, utilizing individual UAV sensing within the formation, allowing for dynamic adaptations such as opening/closing wings or merging into a straight line. Simulation results show that the self-reconfigurable V-shape formation offers adaptability and effectiveness for UAV formations in complex operational scenarios.

Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian belief propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages in a graphical model structure. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach is suited to distributed computing and can efficiently handle complex dependence structures. GEnBP is particularly advantageous when the ensemble size is considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including jointly learning system parameters, observation parameters, and latent state variables.

Collaborative perception in automated vehicles leverages the exchange of information between agents, aiming to elevate perception results. Previous camera-based collaborative 3D perception methods typically employ 3D bounding boxes or bird's eye views as representations of the environment. However, these approaches fall short in offering a comprehensive 3D environmental prediction. To bridge this gap, we introduce the first method for collaborative 3D semantic occupancy prediction. Particularly, it improves local 3D semantic occupancy predictions by hybrid fusion of (i) semantic and occupancy task features, and (ii) compressed orthogonal attention features shared between vehicles. Additionally, due to the lack of a collaborative perception dataset designed for semantic occupancy prediction, we augment a current collaborative perception dataset to include 3D collaborative semantic occupancy labels for a more robust evaluation. The experimental findings highlight that: (i) our collaborative semantic occupancy predictions excel above the results from single vehicles by over 30%, and (ii) models anchored on semantic occupancy outpace state-of-the-art collaborative 3D detection techniques in subsequent perception applications, showcasing enhanced accuracy and enriched semantic-awareness in road environments.

The Industrial Internet of Things (IIoT) refers to the use of interconnected smart devices, sensors, and other technologies to create a network of intelligent systems that can monitor and manage industrial processes. 6TiSCH (IPv6 over the Time Slotted Channel Hopping mode of IEEE 802.15.4e) as an enabling technology facilitates low-power and low-latency communication between IoT devices in industrial environments. The Routing Protocol for Low power and lossy networks (RPL), which is used as the de-facto routing protocol for 6TiSCH networks is observed to suffer from several limitations, especially during congestion in the network. Therefore, there is an immediate need for some modifications to the RPL to deal with this problem. Under traffic load which keeps on changing continuously at different instants of time, the proposed mechanism aims at finding the appropriate parent for a node that can forward the packet to the destination through the least congested path with minimal packet loss. This facilitates congestion management under dynamic traffic loads. For this, a new metric for routing using the concept of exponential weighting has been proposed, which takes the number of packets present in the queue of the node into account when choosing the parent at a particular instance of time. Additionally, the paper proposes a parent selection and swapping mechanism for congested networks. Performance evaluations are carried out in order to validate the proposed work. The results show an improvement in the performance of RPL under heavy and dynamic traffic loads.

Two-sided platforms are central to modern commerce and content sharing and often utilize A/B testing for developing new features. While user-side experiments are common, seller-side experiments become crucial for specific interventions and metrics. This paper investigates the effects of interference caused by feedback loops on seller-side experiments in two-sided platforms, with a particular focus on the counterfactual interleaving design, proposed in \citet{ha2020counterfactual,nandy2021b}. These feedback loops, often generated by pacing algorithms, cause outcomes from earlier sessions to influence subsequent ones. This paper contributes by creating a mathematical framework to analyze this interference, theoretically estimating its impact, and conducting empirical evaluations of the counterfactual interleaving design in real-world scenarios. Our research shows that feedback loops can result in misleading conclusions about the treatment effects.

An emotional support conversation system aims to alleviate users' emotional distress and assist them in addressing their challenges. To generate supportive responses, it is critical to consider multiple factors such as empathy, support strategies, and response coherence, as established in prior methods. Nonetheless, previous models occasionally generate unhelpful responses, which intend to provide support but display counterproductive effects. According to psychology and communication theories, poor performance in just one contributing factor might cause a response to be unhelpful. From the model training perspective, since these models have not been exposed to unhelpful responses during their training phase, they are unable to distinguish if the tokens they generate might result in unhelpful responses during inference. To address this issue, we introduce a novel model-agnostic framework named mitigating unhelpfulness with multifaceted AI feedback for emotional support (Muffin). Specifically, Muffin employs a multifaceted AI feedback module to assess the helpfulness of responses generated by a specific model with consideration of multiple factors. Using contrastive learning, it then reduces the likelihood of the model generating unhelpful responses compared to the helpful ones. Experimental results demonstrate that Muffin effectively mitigates the generation of unhelpful responses while slightly increasing response fluency and relevance.

We provide the first perceptual quantification of user's sensitivity to radial optic flow artifacts and demonstrate a promising approach for masking this optic flow artifact via blink suppression. Near-eye HMDs allow users to feel immersed in virtual environments by providing visual cues, like motion parallax and stereoscopy, that mimic how we view the physical world. However, these systems exhibit a variety of perceptual artifacts that can limit their usability and the user's sense of presence in VR. One well-known artifact is the vergence-accommodation conflict (VAC). Varifocal displays can mitigate VAC, but bring with them other artifacts such as a change in virtual image size (radial optic flow) when the focal plane changes. We conducted a set of psychophysical studies to measure users' ability to perceive this radial flow artifact before, during, and after self-initiated blinks. Our results showed that visual sensitivity was reduced by a factor of 10 at the start and for ~70 ms after a blink was detected. Pre- and post-blink sensitivity was, on average, ~0.15% image size change during normal viewing and increased to ~1.5-2.0% during blinks. Our results imply that a rapid (under 70 ms) radial optic flow distortion can go unnoticed during a blink. Furthermore, our results provide empirical data that can be used to inform engineering requirements for both hardware design and software-based graphical correction algorithms for future varifocal near-eye displays. Our project website is available at //gamma.umd.edu/RoF/.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

北京阿比特科技有限公司