亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Alzheimer's disease (AD) and sleep disorders exhibit a close association, where disruptions in sleep patterns often precede the onset of Mild Cognitive Impairment (MCI) and early-stage AD. This study delves into the potential of utilizing sleep-related electroencephalography (EEG) signals acquired through polysomnography (PSG) for the early detection of AD. Our primary focus is on exploring semi-supervised Deep Learning techniques for the classification of EEG signals due to the clinical scenario characterized by the limited data availability. The methodology entails testing and comparing the performance of semi-supervised SMATE and TapNet models, benchmarked against the supervised XCM model, and unsupervised Hidden Markov Models (HMMs). The study highlights the significance of spatial and temporal analysis capabilities, conducting independent analyses of each sleep stage. Results demonstrate the effectiveness of SMATE in leveraging limited labeled data, achieving stable metrics across all sleep stages, and reaching 90% accuracy in its supervised form. Comparative analyses reveal SMATE's superior performance over TapNet and HMM, while XCM excels in supervised scenarios with an accuracy range of 92 - 94%. These findings underscore the potential of semi-supervised models in early AD detection, particularly in overcoming the challenges associated with the scarcity of labeled data. Ablation tests affirm the critical role of spatio-temporal feature extraction in semi-supervised predictive performance, and t-SNE visualizations validate the model's proficiency in distinguishing AD patterns. Overall, this research contributes to the advancement of AD detection through innovative Deep Learning approaches, highlighting the crucial role of semi-supervised learning in addressing data limitations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Neck · DirectShow · 均值 · 磁流變材料 ·
2024 年 5 月 17 日

Background and purpose: Deep Learning (DL) has been widely explored for Organs at Risk (OARs) segmentation; however, most studies have focused on a single modality, either CT or MRI, not both simultaneously. This study presents a high-performing DL pipeline for segmentation of 30 OARs from MRI and CT scans of Head and Neck (H&N) cancer patients. Materials and methods: Paired CT and MRI-T1 images from 42 H&N cancer patients alongside annotation for 30 OARs from the H&N OAR CT & MR segmentation challenge dataset were used to develop a segmentation pipeline. After cropping irrelevant regions, rigid followed by non-rigid registration of CT and MRI volumes was performed. Two versions of the CT volume, representing soft tissues and bone anatomy, were stacked with the MRI volume and used as input to an nnU-Net pipeline. Modality Dropout was used during the training to force the model to learn from the different modalities. Segmentation masks were predicted with the trained model for an independent set of 14 new patients. The mean Dice Score (DS) and Hausdorff Distance (HD) were calculated for each OAR across these patients to evaluate the pipeline. Results: This resulted in an overall mean DS and HD of 0.777 +- 0.118 and 3.455 +- 1.679, respectively, establishing the state-of-the-art (SOTA) for this challenge at the time of submission. Conclusion: The proposed pipeline achieved the best DS and HD among all participants of the H&N OAR CT and MR segmentation challenge and sets a new SOTA for automated segmentation of H&N OARs.

Many methods for estimating integrated volatility and related functionals of semimartingales in the presence of jumps require specification of tuning parameters for their use in practice. In much of the available theory, tuning parameters are assumed to be deterministic and their values are specified only up to asymptotic constraints. However, in empirical work and in simulation studies, they are typically chosen to be random and data-dependent, with explicit choices often relying entirely on heuristics. In this paper, we consider novel data-driven tuning procedures for the truncated realized variations of a semimartingale with jumps based on a type of random fixed-point iteration. Being effectively automated, our approach alleviates the need for delicate decision-making regarding tuning parameters in practice and can be implemented using information regarding sampling frequency alone. We show our methods can lead to asymptotically efficient estimation of integrated volatility and exhibit superior finite-sample performance compared to popular alternatives in the literature.

In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours that trade-off between multiple, possibly conflicting, objectives. MORL based on decomposition is a family of solution methods that employ a number of utility functions to decompose the multi-objective problem into individual single-objective problems solved simultaneously in order to approximate a Pareto front of policies. We focus on the case of linear utility functions parameterised by weight vectors w. We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process, with the aim of maximising the hypervolume of the resulting Pareto front. The proposed method is shown to outperform various MORL baselines on Mujoco benchmark problems across different random seeds. The code is online at: //github.com/SYCAMORE-1/ucb-MOPPO.

We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L^1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L^1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L^1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d^{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.

Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.

This paper addresses the problem of pathological lung segmentation, a significant challenge in medical image analysis, particularly pronounced in cases of peripheral opacities (severe fibrosis and consolidation) because of the textural similarity between lung tissue and surrounding areas. To overcome these challenges, this paper emphasizes the use of CycleGAN for unpaired image-to-image translation, in order to provide an augmentation method able to generate fake pathological images matching an existing ground truth. Although previous studies have employed CycleGAN, they often neglect the challenge of shape deformation, which is crucial for accurate medical image segmentation. Our work introduces an innovative strategy that incorporates additional loss functions. Specifically, it proposes an L1 loss based on the lung surrounding which shape is constrained to remain unchanged at the transition from the healthy to pathological domains. The lung surrounding is derived based on ground truth lung masks available in the healthy domain. Furthermore, preprocessing steps, such as cropping based on ribs/vertebra locations, are applied to refine the input for the CycleGAN, ensuring that the network focus on the lung region. This is essential to avoid extraneous biases, such as the zoom effect bias, which can divert attention from the main task. The method is applied to enhance in semi-supervised manner the lung segmentation process by employing a U-Net model trained with on-the-fly data augmentation incorporating synthetic pathological tissues generated by the CycleGAN model. Preliminary results from this research demonstrate significant qualitative and quantitative improvements, setting a new benchmark in the field of pathological lung segmentation. Our code is available at //github.com/noureddinekhiati/Semi-supervised-lung-segmentation

mHealth interventions show significant potential to help in the self-management of chronic diseases, but their under use remains a problem. Considering the substantial diversity among individuals dealing with chronic diseases, tailored strategies are essential. \emph{Adaptive User Interfaces} (AUIs) may help address the diverse and evolving needs of this demographic. To investigate this approach, we developed an AUI prototype informed by existing literature findings. We then used this prototype as the basis for focus group discussions and interview studies with 22 participants managing various chronic diseases, and follow-up surveys of all participants. Through these investigations, we pinpointed key challenges related to the use of AUIs, strategies to improve adaptation design, and potential trade-offs between these challenges and strategies. Concurrently, a quantitative survey was conducted to extract preferences for AUIs in chronic disease-related applications with 90 further participants. This uncovered participants' preferences for various adaptations, data types, collection methods, and involvement levels. Finally, we synthesised these insights and categories, aligning them with existing guidelines and design considerations for mHealth app adaptation design. This resulted in nine guidelines that we refined by a final feedback survey conducted with 20 participants.

Popular regularizers with non-differentiable penalties, such as Lasso, Elastic Net, Generalized Lasso, or SLOPE, reduce the dimension of the parameter space by inducing sparsity or clustering in the estimators' coordinates. In this paper, we focus on linear regression and explore the asymptotic distributions of the resulting low-dimensional patterns when the number of regressors $p$ is fixed, the number of observations $n$ goes to infinity, and the penalty function increases at the rate of $\sqrt{n}$. While the asymptotic distribution of the rescaled estimation error can be derived by relatively standard arguments, the convergence of the pattern does not simply follow from the convergence in distribution, and requires a careful and separate treatment. For this purpose, we use the Hausdorff distance as a suitable mode of convergence for subdifferentials, resulting in the desired pattern convergence. Furthermore, we derive the exact limiting probability of recovering the true model pattern. This probability goes to 1 if and only if the penalty scaling constant diverges to infinity and the regularizer-specific asymptotic irrepresentability condition is satisfied. We then propose simple two-step procedures that asymptotically recover the model patterns, irrespective whether the irrepresentability condition holds. Interestingly, our theory shows that Fused Lasso cannot reliably recover its own clustering pattern, even for independent regressors. It also demonstrates how this problem can be resolved by ``concavifying'' the Fused Lasso penalty coefficients. Additionally, sampling from the asymptotic error distribution facilitates comparisons between different regularizers. We provide short simulation studies showcasing an illustrative comparison between the asymptotic properties of Lasso, Fused Lasso, and SLOPE.

This work focuses on accelerating the multiplication of a dense random matrix with a (fixed) sparse matrix, which is frequently used in sketching algorithms. We develop a novel scheme that takes advantage of blocking and recomputation (on-the-fly random number generation) to accelerate this operation. The techniques we propose decrease memory movement, thereby increasing the algorithm's parallel scalability in shared memory architectures. On the Intel Frontera architecture, our algorithm can achieve 2x speedups over libraries such as Eigen and Intel MKL on some examples. In addition, with 32 threads, we can obtain a parallel efficiency of up to approximately 45%. We also present a theoretical analysis for the memory movement lower bound of our algorithm, showing that under mild assumptions, it's possible to beat the data movement lower bound of general matrix-matrix multiply (GEMM) by a factor of $\sqrt M$, where $M$ is the cache size. Finally, we incorporate our sketching algorithm into a randomized least squares solver. For extremely over-determined sparse input matrices, we show that our results are competitive with SuiteSparse; in some cases, we obtain a speedup of 10x over SuiteSparse.

Out of the participants in a randomized experiment with anticipated heterogeneous treatment effects, is it possible to identify which subjects have a positive treatment effect? While subgroup analysis has received attention, claims about individual participants are much more challenging. We frame the problem in terms of multiple hypothesis testing: each individual has a null hypothesis (stating that the potential outcomes are equal, for example) and we aim to identify those for whom the null is false (the treatment potential outcome stochastically dominates the control one, for example). We develop a novel algorithm that identifies such a subset, with nonasymptotic control of the false discovery rate (FDR). Our algorithm allows for interaction -- a human data scientist (or a computer program) may adaptively guide the algorithm in a data-dependent manner to gain power. We show how to extend the methods to observational settings and achieve a type of doubly-robust FDR control. We also propose several extensions: (a) relaxing the null to nonpositive effects, (b) moving from unpaired to paired samples, and (c) subgroup identification. We demonstrate via numerical experiments and theoretical analysis that the proposed method has valid FDR control in finite samples and reasonably high identification power.

北京阿比特科技有限公司