亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by animals that co-adapt their brain and body to interact with the environment, we present a tendon-driven and over-actuated (i.e., n joint, n+1 actuators) bipedal robot that (i) exploits its backdrivable mechanical properties to manage body-environment interactions without explicit control, and (ii) uses a simple 3-layer neural network to learn to walk after only 2 minutes of 'natural' motor babbling (i.e., an exploration strategy that is compatible with leg and task dynamics; akin to childsplay). This brain-body collaboration first learns to produce feet cyclical movements 'in air' and, without further tuning, can produce locomotion when the biped is lowered to be in slight contact with the ground. In contrast, training with 2 minutes of 'naive' motor babbling (i.e., an exploration strategy that ignores leg task dynamics), does not produce consistent cyclical movements 'in air', and produces erratic movements and no locomotion when in slight contact with the ground. When further lowering the biped and making the desired leg trajectories reach 1cm below ground (causing the desired-vs-obtained trajectories error to be unavoidable), cyclical movements based on either natural or naive babbling presented almost equally persistent trends, and locomotion emerged with naive babbling. Therefore, we show how continual learning of walking in unforeseen circumstances can be driven by continual physical adaptation rooted in the backdrivable properties of the plant and enhanced by exploration strategies that exploit plant dynamics. Our studies also demonstrate that the bio-inspired codesign and co-adaptations of limbs and control strategies can produce locomotion without explicit control of trajectory errors.

相關內容

Deviating from conventional perspectives that frame artificial intelligence (AI) systems solely as logic emulators, we propose a novel program of heuristic reasoning. We distinguish between the 'instrumental' use of heuristics to match resources with objectives, and 'mimetic absorption,' whereby heuristics manifest randomly and universally. Through a series of innovative experiments, including variations of the classic Linda problem and a novel application of the Beauty Contest game, we uncover trade-offs between maximizing accuracy and reducing effort that shape the conditions under which AIs transition between exhaustive logical processing and the use of cognitive shortcuts (heuristics). We provide evidence that AIs manifest an adaptive balancing of precision and efficiency, consistent with principles of resource-rational human cognition as explicated in classical theories of bounded rationality and dual-process theory. Our findings reveal a nuanced picture of AI cognition, where trade-offs between resources and objectives lead to the emulation of biological systems, especially human cognition, despite AIs being designed without a sense of self and lacking introspective capabilities.

Various musculoskeletal humanoids have been developed so far. While these humanoids have the advantage of their flexible and redundant bodies that mimic the human body, they are still far from being applied to real-world tasks. One of the reasons for this is the difficulty of bipedal walking in a flexible body. Thus, we developed a musculoskeletal wheeled robot, Musashi-W, by combining a wheeled base and musculoskeletal upper limbs for real-world applications. Also, we constructed its software system by combining static and dynamic body schema learning, reflex control, and visual recognition. We show that the hardware and software of Musashi-W can make the most of the advantages of the musculoskeletal upper limbs, through several tasks of cleaning by human teaching, carrying a heavy object considering muscle addition, and setting a table through dynamic cloth manipulation with variable stiffness.

In this work we investigate an inverse coefficient problem for the one-dimensional subdiffusion model, which involves a Caputo fractional derivative in time. The inverse problem is to determine two coefficients and multiple parameters (the order, and length of the interval) from one pair of lateral Cauchy data. The lateral Cauchy data are given on disjoint sets in time with a single excitation and the measurement is made on a time sequence located outside the support of the excitation. We prove two uniqueness results for different lateral Cauchy data. The analysis is based on the solution representation, analyticity of the observation and a refined version of inverse Sturm-Liouville theory due to Sini [35]. Our results heavily exploit the memory effect of fractional diffusion for the unique recovery of the coefficients in the model. Several numerical experiments are also presented to complement the analysis.

Motivated by the growing interest in correlation-robust stochastic optimization, we investigate stochastic selection problems beyond independence. Specifically, we consider the instructive case of pairwise-independent priors and matroid constraints. We obtain essentially-optimal bounds for contention resolution and prophet inequalities. The impetus for our work comes from the recent work of Caragiannis et al., who derived a constant-approximation for the single-choice prophet inequality with pairwise-independent priors. For general matroids, our results are tight and largely negative. For both contention resolution and prophet inequalities, our impossibility results hold for the full linear matroid over a finite field. We explicitly construct pairwise-independent distributions which rule out an omega(1/Rank)-balanced offline CRS and an omega(1/log Rank)-competitive prophet inequality against the (usual) oblivious adversary. For both results, we employ a generic approach for constructing pairwise-independent random vectors -- one which unifies and generalizes existing pairwise-independence constructions from the literature on universal hash functions and pseudorandomness. Specifically, our approach is based on our observation that random linear maps turn linear independence into stochastic independence. We then examine the class of matroids which satisfy the so-called partition property -- these include most common matroids encountered in optimization. We obtain positive results for both online contention resolution and prophet inequalities with pairwise-independent priors on such matroids, approximately matching the corresponding guarantees for fully independent priors. These algorithmic results hold against the almighty adversary for both problems.

Swarm robots, which are inspired from the way insects behave collectively in order to achieve a common goal, have become a major part of research with applications involving search and rescue, area exploration, surveillance etc. In this paper, we present a swarm of robots that do not require individual extrinsic sensors to sense the environment but instead use a single central camera to locate and map the swarm. The robots can be easily built using readily available components with the main chassis being 3D printed, making the system low-cost, low-maintenance, and easy to replicate. We describe Zutu's hardware and software architecture, the algorithms to map the robots to the real world, and some experiments conducted using four of our robots. Eventually, we conclude the possible applications of our system in research, education, and industries.

As discussions around 6G begin, it is important to carefully quantify the spectral efficiency gains actually realized by deployed 5G networks as compared to 4G through various enhancements such as higher modulation, beamforming, and MIMO. This will inform the design of future cellular systems, especially in the mid-bands, which provide a good balance between bandwidth and propagation. Similar to 4G, 5G also utilizes low-band (<1 GHz) and mid-band spectrum (1 to 6 GHz), and hence comparing the performance of 4G and 5G in these bands will provide insights into how further improvements can be attained. In this work, we address a crucial question: is the performance boost in 5G compared to 4G primarily a result of increased bandwidth, or do the other enhancements play significant roles, and if so, under what circumstances? Hence, we conduct city-wide measurements of 4G and 5G cellular networks deployed in low- and mid-bands in Chicago and Minneapolis, and carefully quantify the contributions of different aspects of 5G advancements to its improved throughput performance. Our analyses show that (i) compared to 4G, the throughput improvement in 5G today is mainly influenced by the wider channel bandwidth, both from single channels and channel aggregation, (ii) in addition to wider channels, improved 5G throughput requires better signal conditions, which can be delivered by denser deployment and/or use of beamforming in mid-bands, (iii) the channel rank in real-world environments rarely supports the full 4 layers of 4x4 MIMO and (iv) advanced features such as MU-MIMO and higher order modulation such as 1024-QAM have yet to be widely deployed. These observations and conclusions lead one to consider designing the next generation of cellular systems to have wider channels, perhaps with improved channel aggregation, dense deployment with more beams.

In this work, we introduce an advanced thermo-active variable impedance module which builds upon our previous innovation in thermal-based impedance adjustment for actuation systems. Our initial design harnessed the temperature-responsive, viscoelastic properties of Polycaprolactone (PCL) to modulate stiffness and damping, facilitated by integrated flexible Peltier elements. While effective, the reliance on compressing and the inherent stress relaxation characteristics of PCL led to suboptimal response times in impedance adjustments. Addressing these limitations, the current iteration of our module pivots to a novel 'shear-mode' operation. By conducting comprehensive shear rheology analyses on PCL, we have identified a configuration that eliminates the viscoelastic delay, offering a faster response with improved heat transfer efficiency. A key advantage of our module lies in its scalability and elimination of additional mechanical actuators for impedance adjustment. The compactness and efficiency of thermal actuation through Peltier elements allow for significant downsizing, making these thermal, variable impedance modules exceptionally well-suited for applications where space constraints and actuator weight are critical considerations. This development represents a significant leap forward in the design of variable impedance actuators, offering a more versatile, responsive, and compact solution for a wide range of robotic and biomechanical applications.

The compositional approach is important for reasoning about large and complex systems. In this work, we address synchronous systems with hierarchical structures, which are often used to model cyber-physical systems. We revisit the theory of reactive modules and reformulate it based on hypergraphs to clarify the parallel composition and the hierarchical description of modules. Then, we propose an automatic verification method for hierarchical systems. Given a system description annotated with assume-guarantee contracts, the proposed method divides the system into modules and verifies them separately to show that the top-level system satisfies its contract. Our method allows an input to be a circular system in which submodules mutually depend on each other. Experimental result shows our method can be effectively implemented using an SMT-based model checker.

In this dissertation we describe two contributions to the state of the art in reasoning about liveness and safety, respectively. Programs for multiprocessor machines commonly perform busy waiting for synchronization. We propose the first separation logic for modularly verifying termination of such programs under fair scheduling. Our logic requires the proof author to associate a ghost signal with each busy-waiting loop and allows such loops to iterate while their corresponding signal $s$ is not set. The proof author further has to define a well-founded order on signals and to prove that if the looping thread holds an obligation to set a signal $s'$, then $s'$ is ordered above $s$. By using conventional shared state invariants to associate the state of ghost signals with the state of data structures, programs busy-waiting for arbitrary conditions over arbitrary data structures can be verified. Moreover, we present the first study of completeness thresholds for bounded memory safety proofs. Specifically, we consider heap-manipulating programs that iterate over arrays without allocating or freeing memory. In this setting, we present the first notion of completeness thresholds for program verification which reduce unbounded memory safety proofs to bounded ones. Furthermore, we demonstrate that we can characterise completeness thresholds for simple classes of array traversing programs. Finally, we suggest avenues of research to scale this technique theoretically, i.e., to larger classes of programs (heap manipulation, tree-like data structures), and practically by highlighting automation opportunities.

To fully leverage the capabilities of mobile manipulation robots, it is imperative that they are able to autonomously execute long-horizon tasks in large unexplored environments. While large language models (LLMs) have shown emergent reasoning skills on arbitrary tasks, existing work primarily concentrates on explored environments, typically focusing on either navigation or manipulation tasks in isolation. In this work, we propose MoMa-LLM, a novel approach that grounds language models within structured representations derived from open-vocabulary scene graphs, dynamically updated as the environment is explored. We tightly interleave these representations with an object-centric action space. The resulting approach is zero-shot, open-vocabulary, and readily extendable to a spectrum of mobile manipulation and household robotic tasks. We demonstrate the effectiveness of MoMa-LLM in a novel semantic interactive search task in large realistic indoor environments. In extensive experiments in both simulation and the real world, we show substantially improved search efficiency compared to conventional baselines and state-of-the-art approaches, as well as its applicability to more abstract tasks. We make the code publicly available at //moma-llm.cs.uni-freiburg.de.

北京阿比特科技有限公司