The Schr\"{o}dinger equation with random potentials is a fundamental model for understanding the behaviour of particles in disordered systems. Disordered media are characterised by complex potentials that lead to the localisation of wavefunctions, also called Anderson localisation. These wavefunctions may have similar scales of eigenenergies which poses difficulty in their discovery. It has been a longstanding challenge due to the high computational cost and complexity of solving the Schr\"{o}dinger equation. Recently, machine-learning tools have been adopted to tackle these challenges. In this paper, based upon recent advances in machine learning, we present a novel approach for discovering localised eigenstates in disordered media using physics-informed neural networks (PINNs). We focus on the spectral approximation of Hamiltonians in one dimension with potentials that are randomly generated according to the Bernoulli, normal, and uniform distributions. We introduce a novel feature to the loss function that exploits known physical phenomena occurring in these regions to scan across the domain and successfully discover these eigenstates, regardless of the similarity of their eigenenergies. We present various examples to demonstrate the performance of the proposed approach and compare it with isogeometric analysis.
The carrier phase of cellular signals can be utilized for highly accurate positioning, with the potential for orders-of-magnitude performance improvements compared to standard time-difference-of-arrival positioning. Due to the integer ambiguities, standard performance evaluation tools such as the Cram\'er-Rao bound (CRB) are overly optimistic. In this paper, a new performance bound, called the mixed-integer CRB (MICRB) is introduced that explicitly accounts for this integer ambiguity. While computationally more complex than the standard CRB, the MICRB can accurately predict positioning performance, as verified by numerical simulations, and hence it serves as a useful guide to choose the system parameters that facilitate carrier phase positioning.
Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to multiple costly treatment arms, that quantifies the value of optimally selecting among both units and treatment arms at different budget levels. We develop an efficient algorithm for computing these curves and propose bootstrap-based confidence intervals that are exact in large samples for any point on the curve. These confidence intervals can be used to conduct hypothesis tests comparing the value of treatment targeting using an optimal combination of arms with using just a subset of arms, or with a non-targeting assignment rule ignoring covariates, at different budget levels. We demonstrate the statistical performance in a simulation experiment and an application to treatment targeting for election turnout.
We provide a framework to prove convergence rates for discretizations of kinetic Langevin dynamics for $M$-$\nabla$Lipschitz $m$-log-concave densities. Our approach provides convergence rates of $\mathcal{O}(m/M)$, with explicit stepsize restrictions, which are of the same order as the stability threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply this methodology to various integration methods which are popular in the molecular dynamics and machine learning communities. Finally we introduce the property ``$\gamma$-limit convergent" (GLC) to characterise underdamped Langevin schemes that converge to overdamped dynamics in the high friction limit and which have stepsize restrictions that are independent of the friction parameter; we show that this property is not generic by exhibiting methods from both the class and its complement.
Ordinary differential equations (ODEs) are foundational in modeling intricate dynamics across a gamut of scientific disciplines. Yet, a possibility to represent a single phenomenon through multiple ODE models, driven by different understandings of nuances in internal mechanisms or abstraction levels, presents a model selection challenge. This study introduces a testing-based approach for ODE model selection amidst statistical noise. Rooted in the model misspecification framework, we adapt foundational insights from classical statistical paradigms (Vuong and Hotelling) to the ODE context, allowing for the comparison and ranking of diverse causal explanations without the constraints of nested models. Our simulation studies validate the theoretical robustness of our proposed test, revealing its consistent size and power. Real-world data examples further underscore the algorithm's applicability in practice. To foster accessibility and encourage real-world applications, we provide a user-friendly Python implementation of our model selection algorithm, bridging theoretical advancements with hands-on tools for the scientific community.
Physics informed neural networks (PINNs) represent a very powerful class of numerical solvers for partial differential equations using deep neural networks, and have been successfully applied to many diverse problems. However, when applying the method to problems involving singularity, e.g., point sources or geometric singularities, the obtained approximations often have low accuracy, due to limited regularity of the exact solution. In this work, we investigate PINNs for solving Poisson equations in polygonal domains with geometric singularities and mixed boundary conditions. We propose a novel singularity enriched PINN (SEPINN), by explicitly incorporating the singularity behavior of the analytic solution, e.g., corner singularity, mixed boundary condition and edge singularities, into the ansatz space, and present a convergence analysis of the scheme. We present extensive numerical simulations in two and three-dimensions to illustrate the efficiency of the method, and also a comparative study with existing neural network based approaches.
The geodesic model based on the eikonal partial differential equation (PDE) has served as a fundamental tool for the applications of image segmentation and boundary detection in the past two decades. However, the existing approaches commonly only exploit the image edge-based features for computing minimal geodesic paths, potentially limiting their performance in complicated segmentation situations. In this paper, we introduce a new variational image segmentation model based on the minimal geodesic path framework and the eikonal PDE, where the region-based appearance term that defines then regional homogeneity features can be taken into account for estimating the associated minimal geodesic paths. This is done by constructing a Randers geodesic metric interpretation of the region-based active contour energy functional. As a result, the minimization of the active contour energy functional is transformed into finding the solution to the Randers eikonal PDE. We also suggest a practical interactive image segmentation strategy, where the target boundary can be delineated by the concatenation of several piecewise geodesic paths. We invoke the Finsler variant of the fast marching method to estimate the geodesic distance map, yielding an efficient implementation of the proposed region-based Randers geodesic model for image segmentation. Experimental results on both synthetic and real images exhibit that our model indeed achieves encouraging segmentation performance.
Unlike conventional grid and mesh based methods for solving partial differential equations (PDEs), neural networks have the potential to break the curse of dimensionality, providing approximate solutions to problems where using classical solvers is difficult or impossible. While global minimization of the PDE residual over the network parameters works well for boundary value problems, catastrophic forgetting impairs the applicability of this approach to initial value problems (IVPs). In an alternative local-in-time approach, the optimization problem can be converted into an ordinary differential equation (ODE) on the network parameters and the solution propagated forward in time; however, we demonstrate that current methods based on this approach suffer from two key issues. First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors. Second, as the ODE methods scale cubically with the number of model parameters, they are restricted to small neural networks, significantly limiting their ability to represent intricate PDE initial conditions and solutions. Building on these insights, we develop Neural IVP, an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters, enabling us to evolve the dynamics of challenging PDEs with neural networks.
We describe a three precision variant of Newton's method for nonlinear equations. We evaluate the nonlinear residual in double precision, store the Jacobian matrix in single precision, and solve the equation for the Newton step with iterative refinement with a factorization in half precision. We analyze the method as an inexact Newton method. This analysis shows that, except for very poorly conditioned Jacobians, the number of nonlinear iterations needed is the same that one would get if one stored and factored the Jacobian in double precision. In many ill-conditioned cases one can use the low precision factorization as a preconditioner for a GMRES iteration. That approach can recover fast convergence of the nonlinear iteration. We present an example to illustrate the results.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.