亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Behavior trees represent a modular way to create an overall controller from a set of sub-controllers solving different sub-problems. These sub-controllers can be created in different ways, such as classical model based control or reinforcement learning (RL). If each sub-controller satisfies the preconditions of the next sub-controller, the overall controller will achieve the overall goal. However, even if all sub-controllers are locally optimal in achieving the preconditions of the next, with respect to some performance metric such as completion time, the overall controller might be far from optimal with respect to the same performance metric. In this paper we show how the performance of the overall controller can be improved if we use approximations of value functions to inform the design of a sub-controller of the needs of the next one. We also show how, under certain assumptions, this leads to a globally optimal controller when the process is executed on all sub-controllers. Finally, this result also holds when some of the sub-controllers are already given, i.e., if we are constrained to use some existing sub-controllers the overall controller will be globally optimal given this constraint.

相關內容

This article explains the usage of R package CausalModels, which is publicly available on the Comprehensive R Archive Network. While packages are available for sufficiently estimating causal effects, there lacks a package that provides a collection of structural models using the conventional statistical approach developed by Hernan and Robins (2020). CausalModels addresses this deficiency of software in R concerning causal inference by offering tools for methods that account for biases in observational data without requiring extensive statistical knowledge. These methods should not be ignored and may be more appropriate or efficient in solving particular problems. While implementations of these statistical models are distributed among a number of causal packages, CausalModels introduces a simple and accessible framework for a consistent modeling pipeline among a variety of statistical methods for estimating causal effects in a single R package. It consists of common methods including standardization, IP weighting, G-estimation, outcome regression, instrumental variables and propensity matching.

We study the problem of exact support recovery for high-dimensional sparse linear regression under independent Gaussian design when the signals are weak, rare, and possibly heterogeneous. Under a suitable scaling of the sample size and signal sparsity, we fix the minimum signal magnitude at the information-theoretic optimal rate and investigate the asymptotic selection accuracy of best subset selection (BSS) and marginal screening (MS) procedures. We show that despite the ideal setup, somewhat surprisingly, marginal screening can fail to achieve exact recovery with probability converging to one in the presence of heterogeneous signals, whereas BSS enjoys model consistency whenever the minimum signal strength is above the information-theoretic threshold. To mitigate the computational intractability of BSS, we also propose an efficient two-stage algorithmic framework called ETS (Estimate Then Screen) comprised of an estimation step and gradient coordinate screening step, and under the same scaling assumption on sample size and sparsity, we show that ETS achieves model consistency under the same information-theoretic optimal requirement on the minimum signal strength as BSS. Finally, we present a simulation study comparing ETS with LASSO and marginal screening. The numerical results agree with our asymptotic theory even for realistic values of the sample size, dimension and sparsity.

The infinite horizon setting is widely adopted for problems of reinforcement learning (RL). These invariably result in stationary policies that are optimal. In many situations, finite horizon control problems are of interest and for such problems, the optimal policies are time-varying in general. Another setting that has become popular in recent times is of Constrained Reinforcement Learning, where the agent maximizes its rewards while it also aims to satisfy some given constraint criteria. However, this setting has only been studied in the context of infinite horizon MDPs where stationary policies are optimal. We present an algorithm for constrained RL in the Finite Horizon Setting where the horizon terminates after a fixed (finite) time. We use function approximation in our algorithm which is essential when the state and action spaces are large or continuous and use the policy gradient method to find the optimal policy. The optimal policy that we obtain depends on the stage and so is non-stationary in general. To the best of our knowledge, our paper presents the first policy gradient algorithm for the finite horizon setting with constraints. We show the convergence of our algorithm to a constrained optimal policy. We also compare and analyze the performance of our algorithm through experiments and show that our algorithm performs better than some other well known algorithms.

To capture and simulate geometric surface evolutions, one effective approach is based on the phase field methods. Among them, it is important to design and analyze numerical approximations whose error bound depends on the inverse of the diffuse interface thickness (denoted by $\frac 1\epsilon$) polynomially. However, it has been a long-standing problem whether such numerical error bound exists for stochastic phase field equations. In this paper, we utilize the regularization effect of noise to show that near sharp interface limit, there always exists the weak error bound of numerical approximations, which depends on $\frac 1\epsilon$ at most polynomially. To illustrate our strategy, we propose a polynomial taming fully discrete scheme and present novel numerical error bounds under various metrics. Our method of proof could be also extended to a number of other fully numerical approximations for semilinear stochastic partial differential equations (SPDEs).

It is known that when the diffuse interface thickness $\epsilon$ vanishes, the sharp interface limit of the stochastic reaction-diffusion equation is formally a stochastic geometric flow. To capture and simulate such geometric flow, it is crucial to develop numerical approximations whose error bounds depends on $\frac 1\epsilon$ polynomially. However, due to loss of spectral estimate of the linearized stochastic reaction-diffusion equation, how to get such error bound of numerical approximation has been an open problem. In this paper, we solve this weak error bound problem for stochastic reaction-diffusion equations near sharp interface limit. We first introduce a regularized problem which enjoys the exponential ergodicity. Then we present the regularity analysis of the regularized Kolmogorov and Poisson equations which only depends on $\frac 1{\epsilon}$ polynomially. Furthermore, we establish such weak error bound. This phenomenon could be viewed as a kind of the regularization effect of noise on the numerical approximation of stochastic partial differential equation (SPDE). As a by-product, a central limit theorem of the weak approximation is shown near sharp interface limit. Our method of proof could be extended to a number of other spatial and temporal numerical approximations for semilinear SPDEs.

We consider gradient-related methods for low-rank matrix optimization with a smooth cost function. The methods operate on single factors of the low-rank factorization and share aspects of both alternating and Riemannian optimization. Two possible choices for the search directions based on Gauss-Southwell type selection rules are compared: one using the gradient of a factorized non-convex formulation, the other using the Riemannian gradient. While both methods provide gradient convergence guarantees that are similar to the unconstrained case, numerical experiments on a quadratic cost function indicate that the version based on the Riemannian gradient is significantly more robust with respect to small singular values and the condition number of the cost function. As a side result of our approach, we also obtain new convergence results for the alternating least squares method.

In this article, we propose two kinds of neural networks inspired by power method and inverse power method to solve linear eigenvalue problems. These neural networks share similar ideas with traditional methods, in which the differential operator is realized by automatic differentiation. The eigenfunction of the eigenvalue problem is learned by the neural network and the iterative algorithms are implemented by optimizing the specially defined loss function. The largest positive eigenvalue, smallest eigenvalue and interior eigenvalues with the given prior knowledge can be solved efficiently. We examine the applicability and accuracy of our methods in the numerical experiments in one dimension, two dimensions and higher dimensions. Numerical results show that accurate eigenvalue and eigenfunction approximations can be obtained by our methods.

In recent decades, a number of ways of dealing with causality in practice, such as propensity score matching, the PC algorithm and invariant causal prediction, have been introduced. Besides its interpretational appeal, the causal model provides the best out-of-sample prediction guarantees. In this paper, we study the identification of causal-like models from in-sample data that provide out-of-sample risk guarantees when predicting a target variable from a set of covariates. Whereas ordinary least squares provides the best in-sample risk with limited out-of-sample guarantees, causal models have the best out-of-sample guarantees but achieve an inferior in-sample risk. By defining a trade-off of these properties, we introduce $\textit{causal regularization}$. As the regularization is increased, it provides estimators whose risk is more stable across sub-samples at the cost of increasing their overall in-sample risk. The increased risk stability is shown to lead to out-of-sample risk guarantees. We provide finite sample risk bounds for all models and prove the adequacy of cross-validation for attaining these bounds.

The widespread use of maximum Jeffreys'-prior penalized likelihood in binomial-response generalized linear models, and in logistic regression, in particular, are supported by the results of Kosmidis and Firth (2021, Biometrika), who show that the resulting estimates are also always finite-valued, even in cases where the maximum likelihood estimates are not, which is a practical issue regardless of the size of the data set. In logistic regression, the implied adjusted score equations are formally bias-reducing in asymptotic frameworks with a fixed number of parameters and appear to deliver a substantial reduction in the persistent bias of the maximum likelihood estimator in high-dimensional settings where the number of parameters grows asymptotically linearly and slower than the number of observations. In this work, we develop and present two new variants of iteratively reweighted least squares for estimating generalized linear models with adjusted score equations for mean bias reduction and maximization of the likelihood penalized by a positive power of the Jeffreys-prior penalty, which eliminate the requirement of storing $O(n)$ quantities in memory, and can operate with data sets that exceed computer memory or even hard drive capacity. We achieve that through incremental QR decompositions, which enable IWLS iterations to have access only to data chunks of predetermined size. We assess the procedures through a real-data application with millions of observations, and in high-dimensional logistic regression, where a large-scale simulation experiment produces concrete evidence for the existence of a simple adjustment to the maximum Jeffreys'-penalized likelihood estimates that delivers high accuracy in terms of signal recovery even in cases where estimates from ML and other recently-proposed corrective methods do not exist.

We study the fundamental problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her MMS value. An allocation is called MMS if all agents receive at least their MMS value. However, since MMS allocations need not exist when $n>2$, a series of works showed the existence of approximate MMS allocations with the current best factor of $\frac{3}{4} + O(\frac{1}{n})$. The recent work by Akrami et al. showed the limitations of existing approaches and proved that they cannot improve this factor to $3/4 + \Omega(1)$. In this paper, we bypass these barriers to show the existence of $(\frac{3}{4} + \frac{3}{3836})$-MMS allocations by developing new reduction rules and analysis techniques.

北京阿比特科技有限公司