亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a graph G, a dominating set D is a subset of vertices in G where each of the vertices in G is in D or adjacent to some vertex in D. An open-locating-dominating (OLD) set models a system with sensors to detect an intruder in a facility or a faulty component in a network of processors. The goal is to detect and pinpoint an intruder's exact location in a system with a minimum number of sensors. In this paper, we focus on a variant of an OLD set called a redundant OLD set and present a proof for the NP-completeness of the problem of a redundant OLD set.

相關內容

The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.

The human footprint is having a unique set of ridges unmatched by any other human being, and therefore it can be used in different identity documents for example birth certificate, Indian biometric identification system AADHAR card, driving license, PAN card, and passport. There are many instances of the crime scene where an accused must walk around and left the footwear impressions as well as barefoot prints and therefore, it is very crucial to recovering the footprints from identifying the criminals. Footprint-based biometric is a considerably newer technique for personal identification. Fingerprints, retina, iris and face recognition are the methods most useful for attendance record of the person. This time the world is facing the problem of global terrorism. It is challenging to identify the terrorist because they are living as regular as the citizens do. Their soft target includes the industries of special interests such as defence, silicon and nanotechnology chip manufacturing units, pharmacy sectors. They pretend themselves as religious persons, so temples and other holy places, even in markets is in their targets. These are the places where one can obtain their footprints quickly. The gait itself is sufficient to predict the behaviour of the suspects. The present research is driven to identify the usefulness of footprint and gait as an alternative to personal identification.

Given a set $P$ of $n$ points in the plane, we consider the problem of computing the number of points of $P$ in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques for simplex range searching in the plane can be adapted to this problem. For example, by adapting Matou\v{s}ek's results, we can build a data structure of $O(n)$ space so that each query can be answered in $O(\sqrt{n})$ time. Our techniques lead to improvements for several other classical problems, such as batched range searching, counting/reporting intersecting pairs of unit circles, distance selection, discrete 2-center, etc. For example, given a set of $n$ unit disks and a set of $n$ points in the plane, the batched range searching problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir, 1997] solved the problem in $O(n^{4/3}\log n)$ time while our new algorithm runs in $O(n^{4/3})$ time.

The Census TopDown Algorithm (TDA) is a disclosure avoidance system using differential privacy for privacy-loss accounting. The algorithm ingests the final, edited version of the 2020 Census data and the final tabulation geographic definitions. The algorithm then creates noisy versions of key queries on the data, referred to as measurements, using zero-Concentrated Differential Privacy. Another key aspect of the TDA are invariants, statistics that the Census Bureau has determined, as matter of policy, to exclude from the privacy-loss accounting. The TDA post-processes the measurements together with the invariants to produce a Microdata Detail File (MDF) that contains one record for each person and one record for each housing unit enumerated in the 2020 Census. The MDF is passed to the 2020 Census tabulation system to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File. This paper describes the mathematics and testing of the TDA for this purpose.

Empirical results in software engineering have long started to show that findings are unlikely to be applicable to all software systems, or any domain: results need to be evaluated in specified contexts, and limited to the type of systems that they were extracted from. This is a known issue, and requires the establishment of a classification of software types. This paper makes two contributions: the first is to evaluate the quality of the current software classifications landscape. The second is to perform a case study showing how to create a classification of software types using a curated set of software systems. Our contributions show that existing, and very likely even new, classification attempts are deemed to fail for one or more issues, that we named as the `antipatterns' of software classification tasks. We collected 7 of these antipatterns that emerge from both our case study, and the existing classifications. These antipatterns represent recurring issues in a classification, so we discuss practical ways to help researchers avoid these pitfalls. It becomes clear that classification attempts must also face the daunting task of formulating a taxonomy of software types, with the objective of establishing a hierarchy of categories in a classification.

The table-based fact verification task has recently gained widespread attention and yet remains to be a very challenging problem. It inherently requires informative reasoning over natural language together with different numerical and logical reasoning on tables (e.g., count, superlative, comparative). Considering that, we exploit mixture-of-experts and present in this paper a new method: Self-adaptive Mixture-of-Experts Network (SaMoE). Specifically, we have developed a mixture-of-experts neural network to recognize and execute different types of reasoning -- the network is composed of multiple experts, each handling a specific part of the semantics for reasoning, whereas a management module is applied to decide the contribution of each expert network to the verification result. A self-adaptive method is developed to teach the management module combining results of different experts more efficiently without external knowledge. The experimental results illustrate that our framework achieves 85.1% accuracy on the benchmark dataset TabFact, comparable with the previous state-of-the-art models. We hope our framework can serve as a new baseline for table-based verification. Our code is available at //github.com/THUMLP/SaMoE.

Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.

Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.

We study dynamic algorithms for the problem of maximizing a monotone submodular function over a stream of $n$ insertions and deletions. We show that any algorithm that maintains a $(0.5+\epsilon)$-approximate solution under a cardinality constraint, for any constant $\epsilon>0$, must have an amortized query complexity that is $\mathit{polynomial}$ in $n$. Moreover, a linear amortized query complexity is needed in order to maintain a $0.584$-approximate solution. This is in sharp contrast with recent dynamic algorithms of [LMNF+20, Mon20] that achieve $(0.5-\epsilon)$-approximation with a $\mathsf{poly}\log(n)$ amortized query complexity. On the positive side, when the stream is insertion-only, we present efficient algorithms for the problem under a cardinality constraint and under a matroid constraint with approximation guarantee $1-1/e-\epsilon$ and amortized query complexities $\smash{O(\log (k/\epsilon)/\epsilon^2)}$ and $\smash{k^{\tilde{O}(1/\epsilon^2)}\log n}$, respectively, where $k$ denotes the cardinality parameter or the rank of the matroid.

This extensive revision of my paper "Description of an $O(\text{poly}(n))$ Algorithm for NP-Complete Combinatorial Problems" will dramatically simplify the content of the original paper by solving subset-sum instead of $3$-SAT. I will first define the "product-derivative" method which will be used to generate a system of equations for solving unknown polynomial coefficients. Then I will describe the "Dragonfly" algorithm usable to solve subset-sum in $O(n^{16}\log(n))$ which is itself composed of a set of symbolic algebra steps on monic polynomials to convert a subset, $S_T$, of a set of positive integers, $S$, with a given target sum, $T$ into a polynomial with roots corresponding to the elements of $S_T$.

北京阿比特科技有限公司