This paper is the system description of the DKU-MSXF System for the track1, track2 and track3 of the VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC-23). For Track 1, we utilize a network structure based on ResNet for training. By constructing a cross-age QMF training set, we achieve a substantial improvement in system performance. For Track 2, we inherite the pre-trained model from Track 1 and conducte mixed training by incorporating the VoxBlink-clean dataset. In comparison to Track 1, the models incorporating VoxBlink-clean data exhibit a performance improvement by more than 10% relatively. For Track3, the semi-supervised domain adaptation task, a novel pseudo-labeling method based on triple thresholds and sub-center purification is adopted to make domain adaptation. The final submission achieves mDCF of 0.1243 in task1, mDCF of 0.1165 in Track 2 and EER of 4.952% in Track 3.
Generating code from a natural language using Large Language Models (LLMs) such as ChatGPT, seems groundbreaking. Yet, with more extensive use, it's evident that this approach has its own limitations. The inherent ambiguity of natural language presents challenges for complex software designs. Accordingly, our research offers an Agile Model-Driven Development (MDD) approach that enhances code auto-generation using OpenAI's GPT-4. Our work emphasizes "Agility" as a significant contribution to the current MDD method, particularly when the model undergoes changes or needs deployment in a different programming language. Thus, we present a case-study showcasing a multi-agent simulation system of an Unmanned Vehicle Fleet. In the first and second layer of our approach, we constructed a textual representation of the case-study using Unified Model Language (UML) diagrams. In the next layer, we introduced two sets of constraints that minimize model ambiguity. Object Constraints Language (OCL) is applied to fine-tune the code constructions details, while FIPA ontology is used to shape communication semantics and protocols. Ultimately, leveraging GPT-4, our last layer auto-generates code in both Java and Python. The Java code is deployed within the JADE framework, while the Python code is deployed in PADE framework. Concluding our research, we engaged in a comprehensive evaluation of the generated code. From a behavioural standpoint, the auto-generated code aligned perfectly with the expected UML sequence diagram. Structurally, we compared the complexity of code derived from UML diagrams constrained solely by OCL to that influenced by both OCL and FIPA-ontology. Results indicate that ontology-constrained model produce inherently more intricate code, but it remains manageable and low-risk for further testing and maintenance.
Meta-evaluation studies of system performances in controlled offline evaluation campaigns, like TREC and CLEF, show a need for innovation in evaluating IR-systems. The field of academic search is no exception to this. This might be related to the fact that relevance in academic search is multilayered and therefore the aspect of user-centric evaluation is becoming more and more important. The Living Labs for Academic Search (LiLAS) lab aims to strengthen the concept of user-centric living labs for the domain of academic search by allowing participants to evaluate their retrieval approaches in two real-world academic search systems from the life sciences and the social sciences. To this end, we provide participants with metadata on the systems' content as well as candidate lists with the task to rank the most relevant candidate to the top. Using the STELLA-infrastructure, we allow participants to easily integrate their approaches into the real-world systems and provide the possibility to compare different approaches at the same time.
Welcome to the sixth edition of the AI Index Report. This year, the report introduces more original data than any previous edition, including a new chapter on AI public opinion, a more thorough technical performance chapter, original analysis about large language and multimodal models, detailed trends in global AI legislation records, a study of the environmental impact of AI systems, and more. The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world's most credible and authoritative source for data and insights about AI.
We aim to improve the Inverted Neural Radiance Fields (iNeRF) algorithm which defines the image pose estimation problem as a NeRF based iterative linear optimization. NeRFs are novel neural space representation models that can synthesize photorealistic novel views of real-world scenes or objects. Our contributions are as follows: we extend the localization optimization objective with a depth-based loss function, we introduce a multi-image based loss function where a sequence of images with known relative poses are used without increasing the computational complexity, we omit hierarchical sampling during volumetric rendering, meaning only the coarse model is used for pose estimation, and we how that by extending the sampling interval convergence can be achieved even or higher initial pose estimate errors. With the proposed modifications the convergence speed is significantly improved, and the basin of convergence is substantially extended.
The Cadenza project aims to enhance the audio quality of music for individuals with hearing loss. As part of this, the project is organizing the ICASSP SP Cadenza Challenge: Music Demixing/Remixing for Hearing Aids. The challenge can be tackled by decomposing the music at the hearing aid microphones into vocals, bass, drums, and other components. These can then be intelligently remixed in a personalized manner to improve audio quality. Alternatively, an end-to-end approach could be used. Processes need to consider the music itself, the gain applied to each component, and the listener's hearing loss. The submitted entries will be evaluated using the intrusive objective metric, the Hearing Aid Audio Quality Index (HAAQI). This paper outlines the challenge.
This report provides a concise overview of the proposed North system, which aims to achieve automatic word/syllable recognition for Taiwanese Hakka (Sixian). The report outlines three key components of the system: the acquisition, composition, and utilization of the training data; the architecture of the model; and the hardware specifications and operational statistics. The demonstration of the system can be found at //asrvm.iis.sinica.edu.tw/hakka_sixian.
Over-the-Air (OtA) Federated Learning (FL) refers to an FL system where multiple agents apply OtA computation for transmitting model updates to a common edge server. Two important features of OtA computation, namely linear processing and signal-level superposition, motivate the use of linear compression with compressed sensing (CS) methods to reduce the number of data samples transmitted over the channel. The previous works on applying CS methods in OtA FL have primarily assumed that the original model update vectors are sparse, or they have been sparsified before compression. However, it is unclear whether linear compression with CS-based reconstruction is more effective than directly sending the non-zero elements in the sparsified update vectors, under the same total power constraint. In this study, we examine and compare several communication designs with or without sparsification. Our findings demonstrate that sparsification before compression is not necessary. Alternatively, sparsification without linear compression can also achieve better performance than the commonly considered setup that combines both.
This paper presents a scalable multigrid preconditioner targeting large-scale systems arising from discontinuous Petrov-Galerkin (DPG) discretizations of high-frequency wave operators. This work is built on previously developed multigrid preconditioning techniques of Petrides and Demkowicz (Comput. Math. Appl. 87 (2021) pp. 12-26) and extends the convergence results from $\mathcal{O}(10^7)$ degrees of freedom (DOFs) to $\mathcal{O}(10^9)$ DOFs using a new scalable parallel MPI/OpenMP implementation. Novel contributions of this paper include an alternative definition of coarse-grid systems based on restriction of fine-grid operators, yielding superior convergence results. In the uniform refinement setting, a detailed convergence study is provided, demonstrating h and p robust convergence and linear dependence with respect to the wave frequency. The paper concludes with numerical results on hp-adaptive simulations including a large-scale seismic modeling benchmark problem with high material contrast.
Tumor segmentation in medical imaging is crucial and relies on precise delineation. Fluorodeoxyglucose Positron-Emission Tomography (FDG-PET) is widely used in clinical practice to detect metabolically active tumors. However, FDG-PET scans may misinterpret irregular glucose consumption in healthy or benign tissues as cancer. Combining PET with Computed Tomography (CT) can enhance tumor segmentation by integrating metabolic and anatomic information. FDG-PET/CT scans are pivotal for cancer staging and reassessment, utilizing radiolabeled fluorodeoxyglucose to highlight metabolically active regions. Accurately distinguishing tumor-specific uptake from physiological uptake in normal tissues is a challenging aspect of precise tumor segmentation. The AutoPET challenge addresses this by providing a dataset of 1014 FDG-PET/CT studies, encouraging advancements in accurate tumor segmentation and analysis within the FDG-PET/CT domain. Code: //github.com/matt3o/AutoPET2-Submission/
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.