亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traditional reactive approach of blacklisting botnets fails to adapt to the rapidly evolving landscape of cyberattacks. An automated and proactive approach to detect and block botnet hosts will immensely benefit the industry. Behavioral analysis of botnet is shown to be effective against a wide variety of attack types. Current works, however, focus solely on analyzing network traffic from and to the bots. In this work we take a different approach of analyzing the chain of commands input by attackers in a compromised host. We have deployed several honeypots to simulate Linux shells and allowed attackers access to the shells to collect a large dataset of commands. We have further developed an automated mechanism to analyze these data. For the automation we have developed a system called CYbersecurity information Exchange with Privacy (CYBEX-P). Finally, we have done a sequential analysis on the dataset to show that we can successfully predict attacker behavior from the shell commands without analyzing network traffic like previous works.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

With modern IVIS becoming more capable and complex than ever, their evaluation becomes increasingly difficult. The analysis of large amounts of user behavior data can help to cope with this complexity and can support UX experts in designing IVIS that serve customer needs and are safe to operate while driving. We, therefore, propose a Multi-level User Behavior Visualization Framework providing effective visualizations of user behavior data that is collected via telematics from production vehicles. Our approach visualizes user behavior data on three different levels: (1) The Task Level View aggregates event sequence data generated through touchscreen interactions to visualize user flows. (2) The Flow Level View allows comparing the individual flows based on a chosen metric. (3) The Sequence Level View provides detailed insights into touch interactions, glance, and driving behavior. Our case study proves that UX experts consider our approach a useful addition to their design process.

Merging at highway on-ramps while interacting with other human-driven vehicles is challenging for autonomous vehicles (AVs). An efficient route to this challenge requires exploring and exploiting knowledge of the interaction process from demonstrations by humans. However, it is unclear what information (or environmental states) is utilized by the human driver to guide their behavior throughout the whole merging process. This paper provides quantitative analysis and evaluation of the merging behavior at highway on-ramps with congested traffic in a volume of time and space. Two types of social interaction scenarios are considered based on the social preferences of surrounding vehicles: courteous and rude. The significant levels of environmental states for characterizing the interactive merging process are empirically analyzed based on the real-world INTERACTION dataset. Experimental results reveal two fundamental mechanisms in the merging process: 1) Human drivers select different states to make sequential decisions at different moments of task execution, and 2) the social preference of surrounding vehicles can impact variable selection for making decisions. It implies that efficient decision-making design should filter out irrelevant information while considering social preference to achieve comparable human-level performance. These essential findings shed light on developing new decision-making approaches for AVs.

The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the Internet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN\_IoT dataset according to IoT devices' IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.

The 2019 Coronavirus disease (COVID-19) pandemic, caused by a quick dissemination of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has had a deep impact worldwide, both in terms of the loss of human life and the economic and social disruption. The use of digital technologies has been seen as an important effort to combat the pandemic and one of such technologies is contact tracing applications. These applications were successfully employed to face other infectious diseases, thus they have been used during the current pandemic. However, the use of contact tracing poses several privacy concerns since it is necessary to store and process data which can lead to the user/device identification as well as location and behavior tracking. These concerns are even more relevant when considering nationwide implementations since they can lead to mass surveillance by authoritarian governments. Despite the restrictions imposed by data protection laws from several countries, there are still doubts on the preservation of the privacy of the users. In this article, we analyze the privacy features in national contact tracing COVID-19 applications considering their intrinsic characteristics. As a case study, we discuss in more depth the Brazilian COVID-19 application Coronav\'irus-SUS, since Brazil is one of the most impacted countries by the current pandemic. Finally, as we believe contact tracing will continue to be employed as part of the strategy for the current and potential future pandemics, we present key research challenges.

We contemplate this article to help the teachers of programming in his aspiration for giving some appropriate and interesting examples. The work will be especially useful for students-future programmers, and for their lecturers. Some of the strong sides of these programming languages C/C++ and Java are the possibilities of low-level programming. Some of the means for this possibility are the introduced standard bitwise operations, with the help of which, it is possible to directly operate with every bit of an arbitrary variable situated in the computers memory. In the current study, we are going to describe some methodical aspects for work with the bitwise operations and we will discuss the benefit of using bitwise operations in programming. The article shows some advantages of using bitwise operations, realizing various operations with sets.

Process mining enables business owners to discover and analyze their actual processes using event data that are widely available in information systems. Event data contain detailed information which is incredibly valuable for providing insights. However, such detailed data often include highly confidential and private information. Thus, concerns of privacy and confidentiality in process mining are becoming increasingly relevant and new techniques are being introduced. To make the techniques easily accessible, new tools need to be developed to integrate the introduced techniques and direct users to appropriate solutions based on their needs. In this paper, we present a Python-based infrastructure implementing and integrating state-of-the-art privacy/confidentiality preservation techniques in process mining. Our tool provides an easy-to-use web-based user interface for privacy-preserving data publishing, risk analysis, and data utility analysis. The tool also provides a set of anonymization operations that can be utilized to support privacy/confidentiality preservation. The tool manages both standard XES event logs and non-standard event data. We also store and manage privacy metadata to track the changes made by privacy/confidentiality preservation techniques.

To build a robust secure solution for smart city IOT network from any Cyber attacks using Artificial Intelligence. In Smart City IOT network, data collected from different log collectors or direct sources from cloud or edge should harness the potential of AI. The smart city command and control center team will leverage these models and deploy it in different city IOT network to help on intrusion prediction, network packet surge, potential botnet attacks from external network. Some of the vital use cases considered based on the users of command-and-control center

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

Recent high-profile cyber attacks exemplify why organizations need better cyber defenses. Cyber threats are hard to accurately predict because attackers usually try to mask their traces. However, they often discuss exploits and techniques on hacking forums. The community behavior of the hackers may provide insights into groups' collective malicious activity. We propose a novel approach to predict cyber events using sentiment analysis. We test our approach using cyber attack data from 2 major business organizations. We consider 3 types of events: malicious software installation, malicious destination visits, and malicious emails that surpassed the target organizations' defenses. We construct predictive signals by applying sentiment analysis on hacker forum posts to better understand hacker behavior. We analyze over 400K posts generated between January 2016 and January 2018 on over 100 hacking forums both on surface and Dark Web. We find that some forums have significantly more predictive power than others. Sentiment-based models that leverage specific forums can outperform state-of-the-art deep learning and time-series models on forecasting cyber attacks weeks ahead of the events.

北京阿比特科技有限公司