This paper addresses the challenge of autonomous excavation of challenging terrains, in particular those that are prone to jamming and inter-particle adhesion when tackled by a standard penetrate-drag-scoop motion pattern. Inspired by human excavation strategies, our approach incorporates oscillatory rotation elements -- including swivel, twist, and dive motions -- to break up compacted, tangled grains and reduce jamming. We also present an adaptive impedance control method, the Reactive Attractor Impedance Controller (RAIC), that adapts a motion trajectory to unexpected forces during loading in a manner that tracks a trajectory closely when loads are low, but avoids excessive loads when significant resistance is met. Our method is evaluated on four terrains using a robotic arm, demonstrating improved excavation performance across multiple metrics, including volume scooped, protective stop rate, and trajectory completion percentage.
The construction industry faces high risks due to frequent accidents, often leaving workers in perilous situations where rapid response is critical. Traditional safety monitoring methods, including wearable sensors and GPS, often fail under obstructive or indoor conditions. This research introduces a novel real-time scream detection and localization system tailored for construction sites, especially in low-resource environments. Integrating Wav2Vec2 and Enhanced ConvNet models for accurate scream detection, coupled with the GCC-PHAT algorithm for robust time delay estimation under reverberant conditions, followed by a gradient descent-based approach to achieve precise position estimation in noisy environments. Our approach combines these concepts to achieve high detection accuracy and rapid localization, thereby minimizing false alarms and optimizing emergency response. Preliminary results demonstrate that the system not only accurately detects distress calls amidst construction noise but also reliably identifies the caller's location. This solution represents a substantial improvement in worker safety, with the potential for widespread application across high-risk occupational environments. The scripts used for training, evaluation of scream detection, position estimation, and integrated framework will be released at: //github.com/Anmol2059/construction_safety.
This paper introduces a framework for an indoor autonomous mobility system that can perform patient transfers and materials handling. Unlike traditional systems that rely on onboard perception sensors, the proposed approach leverages a global perception and localization (PL) through Infrastructure Sensor Nodes (ISNs) and cloud computing technology. Using the global PL, an integrated Model Predictive Control (MPC)-based local planning and tracking controller augmented with Artificial Potential Field (APF) is developed, enabling reliable and efficient motion planning and obstacle avoidance ability while tracking predefined reference motions. Simulation results demonstrate the effectiveness of the proposed MPC controller in smoothly navigating around both static and dynamic obstacles. The proposed system has the potential to extend to intelligent connected autonomous vehicles, such as electric or cargo transport vehicles with four-wheel independent drive/steering (4WID-4WIS) configurations.
Storytelling is a fundamental aspect of human communication, relying heavily on creativity to produce narratives that are novel, appropriate, and surprising. While large language models (LLMs) have recently demonstrated the ability to generate high-quality stories, their creative capabilities remain underexplored. Previous research has either focused on creativity tests requiring short responses or primarily compared model performance in story generation to that of professional writers. However, the question of whether LLMs exhibit creativity in writing short stories on par with the average human remains unanswered. In this work, we conduct a systematic analysis of creativity in short story generation across LLMs and everyday people. Using a five-sentence creative story task, commonly employed in psychology to assess human creativity, we automatically evaluate model- and human-generated stories across several dimensions of creativity, including novelty, surprise, and diversity. Our findings reveal that while LLMs can generate stylistically complex stories, they tend to fall short in terms of creativity when compared to average human writers.
The increasing interest in autonomous driving systems has highlighted the need for an in-depth analysis of human driving behavior in diverse scenarios. Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices and ensure seamless integration into human-dominated environments. This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and leveraging existing safety and behavior-related metrics, such as time to collision, adherence to speed limits, and interactions with other traffic participants, we aim to provide a comprehensive understanding of each datasets strengths and limitations. Our analysis focuses on the distribution of data samples, identifying noise, outliers, and undesirable behaviors exhibited by human drivers in both the training and validation sets. The results underscore the need for applying robust filtering techniques to certain datasets due to high levels of noise and the presence of such undesirable behaviors.
This paper argues for the strategic treatment of artificial intelligence as a key industry within broader industrial policy framework of Pakistan, underscoring the importance of aligning it with national goals such as economic resilience and preservation of autonomy. The paper starts with defining industrial policy as a set of targeted government interventions to shape specific sectors for strategic outcomes and argues for its application to AI in Pakistan due to its huge potential, the risks of unregulated adoption, and prevailing market inefficiencies. The paper conceptualizes AI as a layered ecosystem, comprising foundational infrastructure, core computing, development platforms, and service and product layers, supported by education, government policy, and research and development. The analysis highlights that AI sector of Pakistan is predominantly service oriented, with limited product innovation and dependence on foreign technologies, posing risks to economic independence, national security, and employment. To address these challenges, the paper recommends educational reforms, support for local AI product development, initiatives for indigenous cloud and hardware capabilities, and public-private collaborations on foundational models. Additionally, it advocates for public procurement policies and infrastructure incentives to foster local solutions and reduce reliance on foreign providers. This strategy aims to position Pakistan as a competitive, autonomous player in the global AI ecosystem.
We report assumption-free bounds for any contrast between the probabilities of the potential outcome under exposure and non-exposure when the confounders are missing not at random. We assume that the missingness mechanism is outcome-independent. We also report a sensitivity analysis method to complement our bounds.
Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.