The multivariate inverse hypergeometric (MIH) distribution is an extension of the negative multinomial (NM) model that accounts for sampling without replacement in a finite population. Even though most studies on longitudinal count data with a specific number of `failures' occur in a finite setting, the NM model is typically chosen over the more accurate MIH model. This raises the question: How much information is lost when inferring with the approximate NM model instead of the true MIH model? The loss is quantified by a measure called deficiency in statistics. In this paper, asymptotic bounds for the deficiencies between MIH and NM experiments are derived, as well as between MIH and the corresponding multivariate normal experiments with the same mean-covariance structure. The findings are supported by a local approximation for the log-ratio of the MIH and NM probability mass functions, and by Hellinger distance bounds.
The problem of straggler mitigation in distributed matrix multiplication (DMM) is considered for a large number of worker nodes and a fixed small finite field. Polynomial codes and matdot codes are generalized by making use of algebraic function fields (i.e., algebraic functions over an algebraic curve) over a finite field. The construction of optimal solutions is translated to a combinatorial problem on the Weierstrass semigroups of the corresponding algebraic curves. Optimal or almost optimal solutions are provided. These have the same computational complexity per worker as classical polynomial and matdot codes, and their recovery thresholds are almost optimal in the asymptotic regime (growing number of workers and a fixed finite field).
The celebrated Kleene fixed point theorem is crucial in the mathematical modelling of recursive specifications in Denotational Semantics. In this paper we discuss whether the hypothesis of the aforementioned result can be weakened. An affirmative answer to the aforesaid inquiry is provided so that a characterization of those properties that a self-mapping must satisfy in order to guarantee that its set of fixed points is non-empty when no notion of completeness are assumed to be satisfied by the partially ordered set. Moreover, the case in which the partially ordered set is coming from a quasi-metric space is treated in depth. Finally, an application of the exposed theory is obtained. Concretely, a mathematical method to discuss the asymptotic complexity of those algorithms whose running time of computing fulfills a recurrence equation is presented. Moreover, the aforesaid method retrieves the fixed point based methods that appear in the literature for asymptotic complexity analysis of algorithms. However, our new method improves the aforesaid methods because it imposes fewer requirements than those that have been assumed in the literature and, in addition, it allows to state simultaneously upper and lower asymptotic bounds for the running time computing.
The reconstruction of cortical surfaces is a prerequisite for quantitative analyses of the cerebral cortex in magnetic resonance imaging (MRI). Existing segmentation-based methods separate the surface registration from the surface extraction, which is computationally inefficient and prone to distortions. We introduce Vox2Cortex-Flow (V2C-Flow), a deep mesh-deformation technique that learns a deformation field from a brain template to the cortical surfaces of an MRI scan. To this end, we present a geometric neural network that models the deformation-describing ordinary differential equation in a continuous manner. The network architecture comprises convolutional and graph-convolutional layers, which allows it to work with images and meshes at the same time. V2C-Flow is not only very fast, requiring less than two seconds to infer all four cortical surfaces, but also establishes vertex-wise correspondences to the template during reconstruction. In addition, V2C-Flow is the first approach for cortex reconstruction that models white matter and pial surfaces jointly, therefore avoiding intersections between them. Our comprehensive experiments on internal and external test data demonstrate that V2C-Flow results in cortical surfaces that are state-of-the-art in terms of accuracy. Moreover, we show that the established correspondences are more consistent than in FreeSurfer and that they can directly be utilized for cortex parcellation and group analyses of cortical thickness.
We propose a new stabilised finite element method for the classical Kolmogorov equation. The latter serves as a basic model problem for large classes of kinetic-type equations and, crucially, is characterised by degenerate diffusion. The stabilisation is constructed so that the resulting method admits a \emph{numerical hypocoercivity} property, analogous to the corresponding property of the PDE problem. More specifically, the stabilisation is constructed so that spectral gap is possible in the resulting ``stronger-than-energy'' stabilisation norm, despite the degenerate nature of the diffusion in Kolmogorov, thereby the method has a provably robust behaviour as the ``time'' variable goes to infinity. We consider both a spatially discrete version of the stabilised finite element method and a fully discrete version, with the time discretisation realised by discontinuous Galerkin timestepping. Both stability and a priori error bounds are proven in all cases. Numerical experiments verify the theoretical findings.
This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.
We consider the generalized Newton method (GNM) for the absolute value equation (AVE) $Ax-|x|=b$. The method has finite termination property whenever it is convergent, no matter whether the AVE has a unique solution. We prove that GNM is convergent whenever $\rho(|A^{-1}|)<1/3$. We also present new results for the case where $A-I$ is a nonsingular $M$-matrix or an irreducible singular $M$-matrix. When $A-I$ is an irreducible singular $M$-matrix, the AVE may have infinitely many solutions. In this case, we show that GNM always terminates with a uniquely identifiable solution, as long as the initial guess has at least one nonpositive component.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.
We study the existence and uniqueness of Lp-bounded mild solutions for a class ofsemilinear stochastic evolutions equations driven by a real L\'evy processes withoutGaussian component not square integrable for instance the stable process through atruncation method by separating the big and small jumps together with the classicaland simple Banach fixed point theorem ; under local Lipschitz, Holder, linear growthconditions on the coefficients.
In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.