亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been an emergence of various models for long-term time series forecasting. Recent studies have demonstrated that a single linear layer, using Channel Dependent (CD) or Channel Independent (CI) modeling, can even outperform a large number of sophisticated models. However, current research primarily considers CD and CI as two complementary yet mutually exclusive approaches, unable to harness these two extremes simultaneously. And it is also a challenging issue that both CD and CI are static strategies that cannot be determined to be optimal for a specific dataset without extensive experiments. In this paper, we reconsider whether the current CI strategy is the best solution for time series forecasting. First, we propose a simple yet effective strategy called CSC, which stands for $\mathbf{C}$hannel $\mathbf{S}$elf-$\mathbf{C}$lustering strategy, for linear models. Our Channel Self-Clustering (CSC) enhances CI strategy's performance improvements while reducing parameter size, for exmpale by over 10 times on electricity dataset, and significantly cutting training time. Second, we further propose Channel Rearrangement (CR), a method for deep models inspired by the self-clustering. CR attains competitive performance against baselines. Finally, we also discuss whether it is best to forecast the future values using the historical values of the same channel as inputs. We hope our findings and methods could inspire new solutions beyond CD/CI.

相關內容

There are pronounced differences in the extent to which industrial and academic AI labs use computing resources. We provide a data-driven survey of the role of the compute divide in shaping machine learning research. We show that a compute divide has coincided with a reduced representation of academic-only research teams in compute intensive research topics, especially foundation models. We argue that, academia will likely play a smaller role in advancing the associated techniques, providing critical evaluation and scrutiny, and in the diffusion of such models. Concurrent with this change in research focus, there is a noticeable shift in academic research towards embracing open source, pre-trained models developed within the industry. To address the challenges arising from this trend, especially reduced scrutiny of influential models, we recommend approaches aimed at thoughtfully expanding academic insights. Nationally-sponsored computing infrastructure coupled with open science initiatives could judiciously boost academic compute access, prioritizing research on interpretability, safety and security. Structured access programs and third-party auditing may also allow measured external evaluation of industry systems.

Fairness has been a critical issue that affects the adoption of deep learning models in real practice. To improve model fairness, many existing methods have been proposed and evaluated to be effective in their own contexts. However, there is still no systematic evaluation among them for a comprehensive comparison under the same context, which makes it hard to understand the performance distinction among them, hindering the research progress and practical adoption of them. To fill this gap, this paper endeavours to conduct the first large-scale empirical study to comprehensively compare the performance of existing state-of-the-art fairness improving techniques. Specifically, we target the widely-used application scenario of image classification, and utilized three different datasets and five commonly-used performance metrics to assess in total 13 methods from diverse categories. Our findings reveal substantial variations in the performance of each method across different datasets and sensitive attributes, indicating over-fitting on specific datasets by many existing methods. Furthermore, different fairness evaluation metrics, due to their distinct focuses, yield significantly different assessment results. Overall, we observe that pre-processing methods and in-processing methods outperform post-processing methods, with pre-processing methods exhibiting the best performance. Our empirical study offers comprehensive recommendations for enhancing fairness in deep learning models. We approach the problem from multiple dimensions, aiming to provide a uniform evaluation platform and inspire researchers to explore more effective fairness solutions via a set of implications.

Deep neural networks have shown remarkable performance in image classification. However, their performance significantly deteriorates with corrupted input data. Domain generalization methods have been proposed to train robust models against out-of-distribution data. Data augmentation in the frequency domain is one of such approaches that enable a model to learn phase features to establish domain-invariant representations. This approach changes the amplitudes of the input data while preserving the phases. However, using fixed phases leads to susceptibility to phase fluctuations because amplitudes and phase fluctuations commonly occur in out-of-distribution. In this study, to address this problem, we introduce an approach using finite variation of the phases of input data rather than maintaining fixed phases. Based on the assumption that the degree of domain-invariant features varies for each phase, we propose a method to distinguish phases based on this degree. In addition, we propose a method called vital phase augmentation (VIPAug) that applies the variation to the phases differently according to the degree of domain-invariant features of given phases. The model depends more on the vital phases that contain more domain-invariant features for attaining robustness to amplitude and phase fluctuations. We present experimental evaluations of our proposed approach, which exhibited improved performance for both clean and corrupted data. VIPAug achieved SOTA performance on the benchmark CIFAR-10 and CIFAR-100 datasets, as well as near-SOTA performance on the ImageNet-100 and ImageNet datasets. Our code is available at //github.com/excitedkid/vipaug.

We implement a Bayesian inference process for Neural Networks to model the time to failure of highly reliable weapon systems with interval-censored data and time-varying covariates. We analyze and benchmark our approach, LaplaceNN, on synthetic and real datasets with standard classification metrics such as Receiver Operating Characteristic (ROC) Area Under Curve (AUC) Precision-Recall (PR) AUC, and reliability curve visualizations.

Human trajectory forecasting is a critical challenge in fields such as robotics and autonomous driving. Due to the inherent uncertainty of human actions and intentions in real-world scenarios, various unexpected occurrences may arise. To uncover latent motion patterns in human behavior, we introduce a novel memory-based method, named Motion Pattern Priors Memory Network. Our method involves constructing a memory bank derived from clustered prior knowledge of motion patterns observed in the training set trajectories. We introduce an addressing mechanism to retrieve the matched pattern and the potential target distributions for each prediction from the memory bank, which enables the identification and retrieval of natural motion patterns exhibited by agents, subsequently using the target priors memory token to guide the diffusion model to generate predictions. Extensive experiments validate the effectiveness of our approach, achieving state-of-the-art trajectory prediction accuracy. The code will be made publicly available.

The search and retrieval of digital histopathology slides is an important task that has yet to be solved. In this case study, we investigate the clinical readiness of three state-of-the-art histopathology slide search engines, Yottixel, SISH, and RetCCL, on three patients with solid tumors. We provide a qualitative assessment of each model's performance in providing retrieval results that are reliable and useful to pathologists. We found that all three image search engines fail to produce consistently reliable results and have difficulties in capturing granular and subtle features of malignancy, limiting their diagnostic accuracy. Based on our findings, we also propose a minimal set of requirements to further advance the development of accurate and reliable histopathology image search engines for successful clinical adoption.

Quantitative technology forecasting uses quantitative methods to understand and project technological changes. It is a broad field encompassing many different techniques and has been applied to a vast range of technologies. A widely used approach in this field is trend extrapolation. Based on the publications available to us, there has been little or no attempt made to systematically review the empirical evidence on quantitative trend extrapolation techniques. This study attempts to close this gap by conducting a systematic review of technology forecasting literature addressing the application of quantitative trend extrapolation techniques. We identified 25 studies relevant to the objective of this research and classified the techniques used in the studies into different categories, among which growth curves and time series methods were shown to remain popular over the past decade, while newer methods, such as machine learning-based hybrid models, have emerged in recent years. As more effort and evidence are needed to determine if hybrid models are superior to traditional methods, we expect to see a growing trend in the development and application of hybrid models to technology forecasting.

A bidirectional integrated sensing and communication (ISAC) system is proposed, in which a pair of transceivers carry out two-way communication and mutual sensing. Both full-duplex and half-duplex operations in narrowband and wideband systems are conceived for the bidirectional ISAC. 1) For the narrowband system, the conventional full-duplex and half-duplex operations are redesigned to take into account sensing echo signals. Then, the transmit beamforming design of both transceivers is proposed for addressing the sensing and communication (S&C) tradeoff. A one-layer iterative algorithm relying on successive convex approximation (SCA) is proposed to obtain Karush-Kuhn-Tucker (KKT) optimal solutions. 2) For the wideband system, the new full-duplex and half-duplex operations are proposed for the bidirectional ISAC. In particular, the frequency-selective fading channel is tackled by delay pre-compensation and path-based beamforming. By redesigning the proposed SCA-based algorithm, the KKT optimal solutions for path-based beamforming for characterizing the S&C tradeoff are obtained. Finally, the numerical results show that: i) For both bandwidth scenarios, the existence of the interference introduced by sensing results in full-duplex may not always outperform half-duplex, especially in the sensing-prior regime or when the communication channel is line-of-sight-dominated; and ii) For both duplex operations, it is sufficient to reuse communication signals for sensing in the narrowband system, while an additional dedicated sensing signal is required in the wideband system.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司