亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an algorithm for safe robot navigation in complex dynamic environments using a variant of model predictive equilibrium point control. We use an optimization formulation to navigate robots gracefully in dynamic environments by optimizing over a trajectory cost function at each timestep. We present a novel trajectory cost formulation that significantly reduces the conservative and deadlock behaviors and generates smooth trajectories. In particular, we propose a new collision probability function that effectively captures the risk associated with a given configuration and the time to avoid collisions based on the velocity direction. Moreover, we propose a terminal state cost based on the expected time-to-goal and time-to-collision values that helps in avoiding trajectories that could result in deadlock. We evaluate our cost formulation in multiple simulated and real-world scenarios, including narrow corridors with dynamic obstacles, and observe significantly improved navigation behavior and reduced deadlocks as compared to prior methods.

相關內容

Several task and motion planning algorithms have been proposed recently to design paths for mobile robot teams with collaborative high-level missions specified using formal languages, such as Linear Temporal Logic (LTL). However, the designed paths often lack reactivity to failures of robot capabilities (e.g., sensing, mobility, or manipulation) that can occur due to unanticipated events (e.g., human intervention or system malfunctioning) which in turn may compromise mission performance. To address this novel challenge, in this paper, we propose a new resilient mission planning algorithm for teams of heterogeneous robots with collaborative LTL missions. The robots are heterogeneous with respect to their capabilities while the mission requires applications of these skills at certain areas in the environment in a temporal/logical order. The proposed method designs paths that can adapt to unexpected failures of robot capabilities. This is accomplished by re-allocating sub-tasks to the robots based on their currently functioning skills while minimally disrupting the existing team motion plans. We provide experiments and theoretical guarantees demonstrating the efficiency and resiliency of the proposed algorithm.

In this paper, we propose a novel approach to wheeled robot navigation through an environment with movable obstacles. A robot exploits knowledge about different obstacle classes and selects the minimally invasive action to perform to clear the path. We trained a convolutional neural network (CNN), so the robot can classify an RGB-D image and decide whether to push a blocking object and which force to apply. After known objects are segmented, they are being projected to a cost-map, and a robot calculates an optimal path to the goal. If the blocking objects are allowed to be moved, a robot drives through them while pushing them away. We implemented our algorithm in ROS, and an extensive set of simulations showed that the robot successfully overcomes the blocked regions. Our approach allows a robot to successfully build a path through regions, where it would have stuck with traditional path-planning techniques.

Simulation engines are widely adopted in robotics. However, they lack either full simulation control, ROS integration, realistic physics, or photorealism. Recently, synthetic data generation and realistic rendering has advanced tasks like target tracking and human pose estimation. However, when focusing on vision applications, there is usually a lack of information like sensor measurements or time continuity. On the other hand, simulations for most robotics tasks are performed in (semi)static environments, with specific sensors and low visual fidelity. To solve this, we introduced in our previous work a fully customizable framework for generating realistic animated dynamic environments (GRADE) [1]. We use GRADE to generate an indoor dynamic environment dataset and then compare multiple SLAM algorithms on different sequences. By doing that, we show how current research over-relies on known benchmarks, failing to generalize. Our tests with refined YOLO and Mask R-CNN models provide further evidence that additional research in dynamic SLAM is necessary. The code, results, and generated data are provided as open-source at //eliabntt.github.io/grade-rrSimulation of Dynamic Environments for SLAM

Deep Reinforcement Learning (DRL) has exhibited efficacy in resolving the Local Path Planning (LPP) problem. However, such application in the real world is immensely limited due to the deficient efficiency and generalization capability of DRL. To alleviate these two issues, a solution named Color is proposed, which consists of an Actor-Sharer-Learner (ASL) training framework and a mobile robot-oriented simulator Sparrow. Specifically, the ASL framework, intending to improve the efficiency of the DRL algorithm, employs a Vectorized Data Collection (VDC) mode to expedite data acquisition, decouples the data collection from model optimization by multithreading, and partially connects the two procedures by harnessing a Time Feedback Mechanism (TFM) to evade data underuse or overuse. Meanwhile, the Sparrow simulator utilizes a 2D grid-based world, simplified kinematics, and conversion-free data flow to achieve a lightweight design. The lightness facilitates vectorized diversity, allowing diversified simulation setups across extensive copies of the vectorized environments, resulting in a notable enhancement in the generalization capability of the DRL algorithm being trained. Comprehensive experiments, comprising 57 benchmark video games, 32 simulated and 36 real-world LPP scenarios, have been conducted to corroborate the superiority of our method in terms of efficiency and generalization. The code and the video of the experiments can be accessed on our website.

We give a simple characterization of which functions can be computed deterministically by anonymous processes in dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, these are the first deterministic algorithms whose running times scale linearly with both the number of processes and a parameter of the network which we call "dynamic disconnectivity" (meaning that our dynamic networks do not necessarily have to be connected at all times). We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classical mass-distribution techniques, our work makes use of a recently introduced combinatorial structure called "history tree", also developing its theory in new directions. Among other contributions, our results make definitive progress on two popular fundamental problems for anonymous dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader Counting (i.e., determining the exact number of processes in the network). In fact, our approach unifies and improves upon several independent lines of research on anonymous networks, including Nedic et al., IEEE Trans. Automat. Contr. 2009; Olshevsky, SIAM J. Control Optim. 2017; Kowalski-Mosteiro, ICALP 2019, SPAA 2021; Di Luna-Viglietta, FOCS 2022.

In this paper, we propose a novel data-driven approach for learning and control of quadrotor UAVs based on the Koopman operator and extended dynamic mode decomposition (EDMD). Building observables for EDMD based on conventional methods like Euler angles or quaternions to represent orientation is known to involve singularities. To address this issue, we employ a set of physics-informed observables based on the underlying topology of the nonlinear system. We use rotation matrices to directly represent the orientation dynamics and obtain a lifted linear representation of the nonlinear quadrotor dynamics in the SE(3) manifold. This EDMD model leads to accurate prediction and can generalize to several validation sets. Further, we design a linear model predictive controller (MPC) based on the proposed EDMD model to track agile reference trajectories. Simulation results show that the proposed MPC controller can run as fast as 100 Hz and is able to track arbitrary reference trajectories with good accuracy. Implementation details can be found in \url{//github.com/sriram-2502/KoopmanMPC_Quadrotor}

We consider the behavior of the price of anarchy and equilibrium flows in nonatomic multi-commodity routing games as a function of the traffic demand. We analyze their smoothness with a special attention to specific values of the demand at which the support of the Wardrop equilibrium exhibits a phase transition with an abrupt change in the set of optimal routes. Typically, when such a phase transition occurs, the price of anarchy function has a breakpoint, \ie is not differentiable. We prove that, if the demand varies proportionally across all commodities, then, at a breakpoint, the largest left or right derivatives of the price of anarchy and of the social cost at equilibrium, are associated with the smaller equilibrium support. This proves -- under the assumption of proportional demand -- a conjecture of o'Hare et al. (2016), who observed this behavior in simulations. We also provide counterexamples showing that this monotonicity of the one-sided derivatives may fail when the demand does not vary proportionally, even if it moves along a straight line not passing through the origin.

We present a deep learning method for composite and task-driven motion control for physically simulated characters. In contrast to existing data-driven approaches using reinforcement learning that imitate full-body motions, we learn decoupled motions for specific body parts from multiple reference motions simultaneously and directly by leveraging the use of multiple discriminators in a GAN-like setup. In this process, there is no need of any manual work to produce composite reference motions for learning. Instead, the control policy explores by itself how the composite motions can be combined automatically. We further account for multiple task-specific rewards and train a single, multi-objective control policy. To this end, we propose a novel framework for multi-objective learning that adaptively balances the learning of disparate motions from multiple sources and multiple goal-directed control objectives. In addition, as composite motions are typically augmentations of simpler behaviors, we introduce a sample-efficient method for training composite control policies in an incremental manner, where we reuse a pre-trained policy as the meta policy and train a cooperative policy that adapts the meta one for new composite tasks. We show the applicability of our approach on a variety of challenging multi-objective tasks involving both composite motion imitation and multiple goal-directed control.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司