亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The decoding performance of conventional belief propagation decoders is seriously confined by the existence of message dependence in the code structure for short or moderate LDPC codes. In spite of the similarity of the external performance, we found the corresponding decoding failures of varied decoders, symbolized by the cross-entropy metric, will leave differed room for improvement for the postprocessing of ordered statistical decoding. Bearing in mind the postprocessor of higher order ensures better performance and incurs more expensive complexity, we propose a dynamic assignment of searching scope with respect to each decoding pattern for the order statistical decoding. Furthermore, the segmentation of decoding patterns, determined on the fly by the number of swaps in reducing the code check matrix into its systematic form via Gaussian elimination operation. will also benefit reducing complexity. Compared with the existing methods, our adapted strategy is justified by saving most memory consumption and inefficient searching of code-word candidates in extensive simulation especially for longer codes, at the cost of marginal performance loss.

相關內容

Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.

Statistical analysis of extremes can be used to predict the probability of future extreme events, such as large rainfalls or devastating windstorms. The quality of these forecasts can be measured through scoring rules. Locally scale invariant scoring rules give equal importance to the forecasts at different locations regardless of differences in the prediction uncertainty. This is a useful feature when computing average scores but can be an unnecessarily strict requirement when mostly concerned with extremes. We propose the concept of local weight-scale invariance, describing scoring rules fulfilling local scale invariance in a certain region of interest, and as a special case local tail-scale invariance, for large events. Moreover, a new version of the weighted Continuous Ranked Probability score (wCRPS) called the scaled wCRPS (swCRPS) that possesses this property is developed and studied. The score is a suitable alternative for scoring extreme value models over areas with varying scale of extreme events, and we derive explicit formulas of the score for the Generalised Extreme Value distribution. The scoring rules are compared through simulation, and their usage is illustrated in modelling of extreme water levels, annual maximum rainfalls, and in an application to non-extreme forecast for the prediction of air pollution.

Modern high-throughput sequencing assays efficiently capture not only gene expression and different levels of gene regulation but also a multitude of genome variants. Focused analysis of alternative alleles of variable sites at homologous chromosomes of the human genome reveals allele-specific gene expression and allele-specific gene regulation by assessing allelic imbalance of read counts at individual sites. Here we formally describe an advanced statistical framework for detecting the allelic imbalance in allelic read counts at single-nucleotide variants detected in diverse omics studies (ChIP-Seq, ATAC-Seq, DNase-Seq, CAGE-Seq, and others). MIXALIME accounts for copy-number variants and aneuploidy, reference read mapping bias, and provides several scoring models to balance between sensitivity and specificity when scoring data with varying levels of experimental noise-caused overdispersion.

Many modern datasets exhibit dependencies among observations as well as variables. This gives rise to the challenging problem of analyzing high-dimensional matrix-variate data with unknown dependence structures. To address this challenge, Kalaitzis et. al. (2013) proposed the Bigraphical Lasso (BiGLasso), an estimator for precision matrices of matrix-normals based on the Cartesian product of graphs. Subsequently, Greenewald, Zhou and Hero (GZH 2019) introduced a multiway tensor generalization of the BiGLasso estimator, known as the TeraLasso estimator. In this paper, we provide sharper rates of convergence in the Frobenius and operator norm for both BiGLasso and TeraLasso estimators for estimating inverse covariance matrices. This improves upon the rates presented in GZH 2019. In particular, (a) we strengthen the bounds for the relative errors in the operator and Frobenius norm by a factor of approximately $\log p$; (b) Crucially, this improvement allows for finite-sample estimation errors in both norms to be derived for the two-way Kronecker sum model. The two-way regime is important because it is the setting that is the most theoretically challenging, and simultaneously the most common in applications. Normality is not needed in our proofs; instead, we consider sub-gaussian ensembles and derive tight concentration of measure bounds, using tensor unfolding techniques. The proof techniques may be of independent interest.

We construct an efficient class of increasingly high-order (up to 17th-order) essentially non-oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes achieve designed high-order convergence in smooth regions which may contain high-order critical points (local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture complex flow structures very well.

When modeling scientific and industrial problems, geometries are typically modeled by explicit boundary representations obtained from computer-aided design software. Unfitted (also known as embedded or immersed) finite element methods offer a significant advantage in dealing with complex geometries, eliminating the need for generating unstructured body-fitted meshes. However, current unfitted finite elements on nonlinear geometries are restricted to implicit (possibly high-order) level set geometries. In this work, we introduce a novel automatic computational pipeline to approximate solutions of partial differential equations on domains defined by explicit nonlinear boundary representations. For the geometrical discretization, we propose a novel algorithm to generate quadratures for the bulk and surface integration on nonlinear polytopes required to compute all the terms in unfitted finite element methods. The algorithm relies on a nonlinear triangulation of the boundary, a kd-tree refinement of the surface cells that simplify the nonlinear intersections of surface and background cells to simple cases that are diffeomorphically equivalent to linear intersections, robust polynomial root-finding algorithms and surface parameterization techniques. We prove the correctness of the proposed algorithm. We have successfully applied this algorithm to simulate partial differential equations with unfitted finite elements on nonlinear domains described by computer-aided design models, demonstrating the robustness of the geometric algorithm and showing high-order accuracy of the overall method.

Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achievedby acquiring and processing multiple images of the sample under different illumination conditions.One of the simplest techniques, Random Illumination Microscopy (RIM), forms the super-resolvedimage from the variance of images obtained with random speckled illuminations. However, thevalidity of this process has not been fully theorized. In this work, we characterize mathematicallythe sample information contained in the variance of diffraction-limited speckled images as a functionof the statistical properties of the illuminations. We show that an unambiguous two-fold resolutiongain is obtained when the speckle correlation length coincides with the width of the observationpoint spread function. Last, we analyze the difference between the variance-based techniques usingrandom speckled illuminations (as in RIM) and those obtained using random fluorophore activation(as in Super-resolution Optical Fluctuation Imaging, SOFI).

High-order methods for conservation laws can be very efficient, in particular on modern hardware. However, it can be challenging to guarantee their stability and robustness, especially for under-resolved flows. A typical approach is to combine a well-working baseline scheme with additional techniques to ensure invariant domain preservation. To obtain good results without too much dissipation, it is important to develop suitable baseline methods. In this article, we study upwind summation-by-parts operators, which have been used mostly for linear problems so far. These operators come with some built-in dissipation everywhere, not only at element interfaces as typical in discontinuous Galerkin methods. At the same time, this dissipation does not introduce additional parameters. We discuss the relation of high-order upwind summation-by-parts methods to flux vector splitting schemes and investigate their local linear/energy stability. Finally, we present some numerical examples for shock-free flows of the compressible Euler equations.

Model averaging has received much attention in the past two decades, which integrates available information by averaging over potential models. Although various model averaging methods have been developed, there are few literatures on the theoretical properties of model averaging from the perspective of stability, and the majority of these methods constrain model weights to a simplex. The aim of this paper is to introduce stability from statistical learning theory into model averaging. Thus, we define the stability, asymptotic empirical risk minimizer, generalization, and consistency of model averaging and study the relationship among them. Our results indicate that stability can ensure that model averaging has good generalization performance and consistency under reasonable conditions, where consistency means model averaging estimator can asymptotically minimize the mean squared prediction error. We also propose a L2-penalty model averaging method without limiting model weights and prove that it has stability and consistency. In order to reduce the impact of tuning parameter selection, we use 10-fold cross-validation to select a candidate set of tuning parameters and perform a weighted average of the estimators of model weights based on estimation errors. The Monte Carlo simulation and an illustrative application demonstrate the usefulness of the proposed method.

We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.

北京阿比特科技有限公司