亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze repeated cross-sectional survey data collected by the Institute of Global Health Innovation, to characterize the perception and behavior of the Italian population during the Covid-19 pandemic, focusing on the period that spans from April to November 2020. To accomplish this goal, we propose a Bayesian dynamic latent-class regression model, that accounts for the effect of sampling bias including survey weights into the likelihood function. According to the proposed approach, attitudes towards Covid-19 are described via three ideal behaviors that are fixed over time, corresponding to different degrees of compliance with spread-preventive measures. The overall tendency toward a specific profile dynamically changes across survey waves via a latent Gaussian process regression, that adjusts for subject-specific covariates. We illustrate the dynamic evolution of Italians' behaviors during the pandemic, providing insights on how the proportion of ideal behaviors has varied during the phases of the lockdown, while measuring the effect of age, sex, region and employment of the respondents on the attitude toward Covid-19.

相關內容

Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.

The price-anticipating Kelly mechanism (PAKM) is one of the most extensively used strategies to allocate divisible resources for strategic users in communication networks and computing systems. The users are deemed as selfish and also benign, each of which maximizes his individual utility of the allocated resources minus his payment to the network operator. However, in many applications a user can use his payment to reduce the utilities of his opponents, thus playing a misbehaving role. It remains mysterious to what extent the misbehaving user can damage or influence the performance of benign users and the network operator. In this work, we formulate a non-cooperative game consisting of a finite amount of benign users and one misbehaving user. The maliciousness of this misbehaving user is captured by his willingness to pay to trade for unit degradation in the utilities of benign users. The network operator allocates resources to all the users via the price-anticipating Kelly mechanism. We present six important performance metrics with regard to the total utility and the total net utility of benign users, and the revenue of network operator under three different scenarios: with and without the misbehaving user, and the maximum. We quantify the robustness of PAKM against the misbehaving actions by deriving the upper and lower bounds of these metrics. With new approaches, all the theoretical bounds are applicable to an arbitrary population of benign users. Our study reveals two important insights: i) the performance bounds are very sensitive to the misbehaving user's willingness to pay at certain ranges; ii) the network operator acquires more revenues in the presence of the misbehaving user which might disincentivize his countermeasures against the misbehaving actions.

Since the World Health Organization announced the COVID-19 pandemic in March 2020, curbing the spread of the virus has become an international priority. It has greatly affected people's lifestyles. In this article, we observe and analyze the impact of the pandemic on people's lives using changes in smartphone application usage. First, through observing the daily usage change trends of all users during the pandemic, we can understand and analyze the effects of restrictive measures and policies during the pandemic on people's lives. In addition, it is also helpful for the government and health departments to take more appropriate restrictive measures in the case of future pandemics. Second, we defined the usage change features and found 9 different usage change patterns during the pandemic according to clusters of users and show the diversity of daily usage changes. It helps to understand and analyze the different impacts of the pandemic and restrictive measures on different types of people in more detail. Finally, according to prediction models, we discover the main related factors of each usage change type from user preferences and demographic information. It helps to predict changes in smartphone activity during future pandemics or when other restrictive measures are implemented, which may become a new indicator to judge and manage the risks of measures or events.

Consistent segmentation of COVID-19 patient's CT scans across multiple time points is essential to assess disease progression and response to therapy accurately. Existing automatic and interactive segmentation models for medical images only use data from a single time point (static). However, valuable segmentation information from previous time points is often not used to aid the segmentation of a patient's follow-up scans. Also, fully automatic segmentation techniques frequently produce results that would need further editing for clinical use. In this work, we propose a new single network model for interactive segmentation that fully utilizes all available past information to refine the segmentation of follow-up scans. In the first segmentation round, our model takes 3D volumes of medical images from two-time points (target and reference) as concatenated slices with the additional reference time point segmentation as a guide to segment the target scan. In subsequent segmentation refinement rounds, user feedback in the form of scribbles that correct the segmentation and the target's previous segmentation results are additionally fed into the model. This ensures that the segmentation information from previous refinement rounds is retained. Experimental results on our in-house multiclass longitudinal COVID-19 dataset show that the proposed model outperforms its static version and can assist in localizing COVID-19 infections in patient's follow-up scans.

Clustering is a fundamental problem in unsupervised machine learning, and fair variants of it have recently received significant attention due to its societal implications. In this work we introduce a novel definition of individual fairness for clustering problems. Specifically, in our model, each point $j$ has a set of other points $\mathcal{S}_j$ that it perceives as similar to itself, and it feels that it is fairly treated if the quality of service it receives in the solution is $\alpha$-close (in a multiplicative sense, for a given $\alpha \geq 1$) to that of the points in $\mathcal{S}_j$. We begin our study by answering questions regarding the structure of the problem, namely for what values of $\alpha$ the problem is well-defined, and what the behavior of the \emph{Price of Fairness (PoF)} for it is. For the well-defined region of $\alpha$, we provide efficient and easily-implementable approximation algorithms for the $k$-center objective, which in certain cases enjoy bounded-PoF guarantees. We finally complement our analysis by an extensive suite of experiments that validates the effectiveness of our theoretical results.

The objectives of this research are analysing the performance of the state-of-the-art machine learning techniques for classifying COVID-19 from cough sound and identifying the model(s) that consistently perform well across different cough datasets. Different performance evaluation metrics (such as precision, sensitivity, specificity, AUC, accuracy, etc.) make it difficult to select the best performance model. To address this issue, in this paper, we propose an ensemble-based multi-criteria decision making (MCDM) method for selecting top performance machine learning technique(s) for COVID-19 cough classification. We use four cough datasets, namely Cambridge, Coswara, Virufy, and NoCoCoDa to verify the proposed method. At first, our proposed method uses the audio features of cough samples and then applies machine learning (ML) techniques to classify them as COVID-19 or non-COVID-19. Then, we consider a multi-criteria decision-making (MCDM) method that combines ensemble technologies (i.e., soft and hard) to select the best model. In MCDM, we use the technique for order preference by similarity to ideal solution (TOPSIS) for ranking purposes, while entropy is applied to calculate evaluation criteria weights. In addition, we apply the feature reduction process through recursive feature elimination with cross-validation under different estimators. The results of our empirical evaluations show that the proposed method outperforms the state-of-the-art models.

As data-driven methods are deployed in real-world settings, the processes that generate the observed data will often react to the decisions of the learner. For example, a data source may have some incentive for the algorithm to provide a particular label (e.g. approve a bank loan), and manipulate their features accordingly. Work in strategic classification and decision-dependent distributions seeks to characterize the closed-loop behavior of deploying learning algorithms by explicitly considering the effect of the classifier on the underlying data distribution. More recently, works in performative prediction seek to classify the closed-loop behavior by considering general properties of the mapping from classifier to data distribution, rather than an explicit form. Building on this notion, we analyze repeated risk minimization as the perturbed trajectories of the gradient flows of performative risk minimization. We consider the case where there may be multiple local minimizers of performative risk, motivated by situations where the initial conditions may have significant impact on the long-term behavior of the system. We provide sufficient conditions to characterize the region of attraction for the various equilibria in this settings. Additionally, we introduce the notion of performative alignment, which provides a geometric condition on the convergence of repeated risk minimization to performative risk minimizers.

The severity of the coronavirus pandemic necessitates the need of effective administrative decisions. Over 4 lakh people in India succumbed to COVID-19, with over 3 crore confirmed cases, and still counting. The threat of a plausible third wave continues to haunt millions. In this ever changing dynamic of the virus, predictive modeling methods can serve as an integral tool. The pandemic has further triggered an unprecedented usage of social media. This paper aims to propose a method for harnessing social media, specifically Twitter, to predict the upcoming scenarios related to COVID-19 cases. In this study, we seek to understand how the surges in COVID-19 related tweets can indicate rise in the cases. This prospective analysis can be utilised to aid administrators about timely resource allocation to lessen the severity of the damage. Using word embeddings to capture the semantic meaning of tweets, we identify Significant Dimensions (SDs).Our methodology predicts the rise in cases with a lead time of 15 days and 30 days with R2 scores of 0.80 and 0.62 respectively. Finally, we explain the thematic utility of the SDs.

Despite much discussion in HCI research about how individual differences likely determine computer users' personal information management (PIM) practices, the extent of the influence of several important factors remains unclear, including users' personalities, spatial abilities, and the different software used to manage their collections. We therefore analyse data from prior CHI work to explore (1) associations of people's file collections with personality and spatial ability, and (2) differences between collections managed with different operating systems and file managers. We find no notable associations between users' attributes and their collections, and minimal predictive power, but do find considerable and surprising differences across operating systems. We discuss these findings and how they can inform future research.

Seam-cutting and seam-driven techniques have been proven effective for handling imperfect image series in image stitching. Generally, seam-driven is to utilize seam-cutting to find a best seam from one or finite alignment hypotheses based on a predefined seam quality metric. However, the quality metrics in most methods are defined to measure the average performance of the pixels on the seam without considering the relevance and variance among them. This may cause that the seam with the minimal measure is not optimal (perception-inconsistent) in human perception. In this paper, we propose a novel coarse-to-fine seam estimation method which applies the evaluation in a different way. For pixels on the seam, we develop a patch-point evaluation algorithm concentrating more on the correlation and variation of them. The evaluations are then used to recalculate the difference map of the overlapping region and reestimate a stitching seam. This evaluation-reestimation procedure iterates until the current seam changes negligibly comparing with the previous seams. Experiments show that our proposed method can finally find a nearly perception-consistent seam after several iterations, which outperforms the conventional seam-cutting and other seam-driven methods.

北京阿比特科技有限公司