亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $(3+\epsilon)\omega(G)+6$ colors, for any constant $\epsilon>0$, where $\omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68\omega(G)$ colors in $O(\log^3 \log n)$ rounds. Moreover, when $\omega(G)=O(1)$, the algorithm runs in $O(\log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4\omega(G)$, which would imply the existence of a $O(\log n)$ round algorithm coloring any unit-disk graph $G$ with (approximatively) $4\omega(G)$ colors.

相關內容

We show that the natural Glauber dynamics mixes rapidly and generates a random proper edge-coloring of a graph with maximum degree $\Delta$ whenever the number of colors is at least $q\geq (\frac{10}{3} + \epsilon)\Delta$, where $\epsilon>0$ is arbitrary and the maximum degree satisfies $\Delta \geq C$ for a constant $C = C(\epsilon)$ depending only on $\epsilon$. For edge-colorings, this improves upon prior work \cite{Vig99, CDMPP19} which show rapid mixing when $q\geq (\frac{11}{3}-\epsilon_0 ) \Delta$, where $\epsilon_0 \approx 10^{-5}$ is a small fixed constant. At the heart of our proof, we establish a matrix trickle-down theorem, generalizing Oppenheim's influential result, as a new technique to prove that a high dimensional simplical complex is a local spectral expander.

The multi-commodity flow-cut gap is a fundamental parameter that affects the performance of several divide \& conquer algorithms, and has been extensively studied for various classes of undirected graphs. It has been shown by Linial, London and Rabinovich and by Aumann and Rabani that for general $n$-vertex graphs it is bounded by $O(\log n)$ and the Gupta-Newman-Rabinovich-Sinclair conjecture asserts that it is $O(1)$ for any family of graphs that excludes some fixed minor. We show that the multicommodity flow-cut gap on \emph{directed} planar graphs is $O(\log^3 n)$. This is the first \emph{sub-polynomial} bound for any family of directed graphs of super-constant treewidth. We remark that for general directed graphs, it has been shown by Chuzhoy and Khanna that the gap is $\widetilde{\Omega}(n^{1/7})$, even for directed acyclic graphs. As a direct consequence of our result, we also obtain the first polynomial-time polylogarithmic-approximation algorithms for the Directed Non-Bipartite Sparsest-Cut, and the Directed Multicut problems for directed planar graphs, which extends the long-standing result for undirectd planar graphs by Rao (with a slightly weaker bound). At the heart of our result we investigate low-distortion quasimetric embeddings into \emph{directed} $\ell_1$. More precisely, we construct $O(\log^2 n)$-Lipschitz quasipartitions for the shortest-path quasimetric spaces of planar digraphs, which generalize the notion of Lipschitz partitions from the theory of metric embeddings. This construction combines ideas from the theory of bi-Lipschitz embeddings, with tools form data structures on directed planar graphs.

The metric dimension dim(G) of a graph $G$ is the minimum cardinality of a subset $S$ of vertices of $G$ such that each vertex of $G$ is uniquely determined by its distances to $S$. It is well-known that the metric dimension of a graph can be drastically increased by the modification of a single edge. Our main result consists in proving that the increase of the metric dimension of an edge addition can be amortized in the sense that if the graph consists of a spanning tree $T$ plus $c$ edges, then the metric dimension of $G$ is at most the metric dimension of $T$ plus $6c$. We then use this result to prove a weakening of a conjecture of Eroh et al. The zero forcing number $Z(G)$ of $G$ is the minimum cardinality of a subset $S$ of black vertices (whereas the other vertices are colored white) of $G$ such that all the vertices will turned black after applying finitely many times the following rule: a white vertex is turned black if it is the only white neighbor of a black vertex. Eroh et al. conjectured that, for any graph $G$, $dim(G)\leq Z(G) + c(G)$, where $c(G)$ is the number of edges that have to be removed from $G$ to get a forest. They proved the conjecture is true for trees and unicyclic graphs. We prove a weaker version of the conjecture: $dim(G)\leq Z(G)+6c(G)$ holds for any graph. We also prove that the conjecture is true for graphs with edge disjoint cycles, widely generalizing the unicyclic result of Eroh et al.

We consider the problem of secure distributed matrix computation (SDMC), where a \textit{user} queries a function of data matrices generated at distributed \textit{source} nodes. We assume the availability of $N$ honest but curious computation servers, which are connected to the sources, the user, and each other through orthogonal and reliable communication links. Our goal is to minimize the amount of data that must be transmitted from the sources to the servers, called the \textit{upload cost}, while guaranteeing that no $T$ colluding servers can learn any information about the source matrices, and the user cannot learn any information beyond the computation result. We first focus on secure distributed matrix multiplication (SDMM), considering two matrices, and propose a novel polynomial coding scheme using the properties of finite field discrete Fourier transform, which achieves an upload cost significantly lower than the existing results in the literature. We then generalize the proposed scheme to include straggler mitigation, and to the multiplication of multiple matrices while keeping the input matrices, the intermediate computation results, as well as the final result secure against any $T$ colluding servers. We also consider a special case, called computation with own data, where the data matrices used for computation belong to the user. In this case, we drop the security requirement against the user, and show that the proposed scheme achieves the minimal upload cost. We then propose methods for performing other common matrix computations securely on distributed servers, including changing the parameters of secret sharing, matrix transpose, matrix exponentiation, solving a linear system, and matrix inversion, which are then used to show how arbitrary matrix polynomials can be computed securely on distributed servers using the proposed procedure.

We consider the problem of sampling from the ferromagnetic Potts and random-cluster models on a general family of random graphs via the Glauber dynamics for the random-cluster model. The random-cluster model is parametrized by an edge probability $p \in (0,1)$ and a cluster weight $q > 0$. We establish that for every $q\ge 1$, the random-cluster Glauber dynamics mixes in optimal $\Theta(n\log n)$ steps on $n$-vertex random graphs having a prescribed degree sequence with bounded average branching $\gamma$ throughout the full high-temperature uniqueness regime $p<p_u(q,\gamma)$. The family of random graph models we consider include the Erd\H{o}s--R\'enyi random graph $G(n,\gamma/n)$, and so we provide the first polynomial-time sampling algorithm for the ferromagnetic Potts model on the Erd\H{o}s--R\'enyi random graphs that works for all $q$ in the full uniqueness regime. We accompany our results with mixing time lower bounds (exponential in the maximum degree) for the Potts Glauber dynamics, in the same settings where our $\Theta(n \log n)$ bounds for the random-cluster Glauber dynamics apply. This reveals a significant computational advantage of random-cluster based algorithms for sampling from the Potts Gibbs distribution at high temperatures in the presence of high-degree vertices.

We study sparse linear regression over a network of agents, modeled as an undirected graph (with no centralized node). The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint -- the latter being instrumental to obtain distributed solution methods. While penalty-based consensus methods have been extensively studied in the optimization literature, their statistical and computational guarantees in the high dimensional setting remain unclear. This work provides an answer to this open problem. Our contribution is two-fold. First, we establish statistical consistency of the estimator: under a suitable choice of the penalty parameter, the optimal solution of the penalized problem achieves near optimal minimax rate $\mathcal{O}(s \log d/N)$ in $\ell_2$-loss, where $s$ is the sparsity value, $d$ is the ambient dimension, and $N$ is the total sample size in the network -- this matches centralized sample rates. Second, we show that the proximal-gradient algorithm applied to the penalized problem, which naturally leads to distributed implementations, converges linearly up to a tolerance of the order of the centralized statistical error -- the rate scales as $\mathcal{O}(d)$, revealing an unavoidable speed-accuracy dilemma.Numerical results demonstrate the tightness of the derived sample rate and convergence rate scalings.

We prove several new tight distributed lower bounds for classic symmetry breaking graph problems. As a basic tool, we first provide a new insightful proof that any deterministic distributed algorithm that computes a $\Delta$-coloring on $\Delta$-regular trees requires $\Omega(\log_\Delta n)$ rounds and any randomized algorithm requires $\Omega(\log_\Delta\log n)$ rounds. We prove this result by showing that a natural relaxation of the $\Delta$-coloring problem is a fixed point in the round elimination framework. As a first application, we show that our $\Delta$-coloring lower bound proof directly extends to arbdefective colorings. We exactly characterize which variants of the arbdefective coloring problem are "easy", and which of them instead are "hard". As a second application, which we see as our main contribution, we use the structure of the fixed point as a building block to prove lower bounds as a function of $\Delta$ for a large class of distributed symmetry breaking problems. For example, we obtain a tight lower bound for the fundamental problem of computing a $(2,\beta)$-ruling set. This is an exponential improvement over the best existing lower bound for the problem, which was proven in [FOCS '20]. Our lower bound even applies to a much more general family of problems that allows for almost arbitrary combinations of natural constraints from coloring problems, orientation problems, and independent set problems, and provides a single unified proof for known and new lower bound results for these types of problems. Our lower bounds as a function of $\Delta$ also imply lower bounds as a function of $n$. We obtain, for example, that maximal independent set, on trees, requires $\Omega(\log n / \log \log n)$ rounds for deterministic algorithms, which is tight.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司