We study the properties of conformal prediction for network data under various sampling mechanisms that commonly arise in practice but often result in a non-representative sample of nodes. We interpret these sampling mechanisms as selection rules applied to a superpopulation and study the validity of conformal prediction conditional on an appropriate selection event. We show that the sampled subarray is exchangeable conditional on the selection event if the selection rule satisfies a permutation invariance property and a joint exchangeability condition holds for the superpopulation. Our result implies the finite-sample validity of conformal prediction for certain selection events related to ego networks and snowball sampling. We also show that when data are sampled via a random walk on a graph, a variant of weighted conformal prediction yields asymptotically valid prediction sets for an independently selected node from the population.
Multi-modal foundation models combining vision and language models such as Flamingo or GPT-4 have recently gained enormous interest. Alignment of foundation models is used to prevent models from providing toxic or harmful output. While malicious users have successfully tried to jailbreak foundation models, an equally important question is if honest users could be harmed by malicious third-party content. In this paper we show that imperceivable attacks on images in order to change the caption output of a multi-modal foundation model can be used by malicious content providers to harm honest users e.g. by guiding them to malicious websites or broadcast fake information. This indicates that countermeasures to adversarial attacks should be used by any deployed multi-modal foundation model.
Deep neural networks are vulnerable to adversarial examples crafted by applying human-imperceptible perturbations on clean inputs. Although many attack methods can achieve high success rates in the white-box setting, they also exhibit weak transferability in the black-box setting. Recently, various methods have been proposed to improve adversarial transferability, in which the input transformation is one of the most effective methods. In this work, we notice that existing input transformation-based works mainly adopt the transformed data in the same domain for augmentation. Inspired by domain generalization, we aim to further improve the transferability using the data augmented from different domains. Specifically, a style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans. Hence, we propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains. To avoid inconsistent semantic information of stylized images for the classification network, we fine-tune the style transfer network and mix up the generated images added by random noise with the original images to maintain semantic consistency and boost input diversity. Extensive experimental results on the ImageNet-compatible dataset show that our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models than state-of-the-art input transformation-based attacks. Code is available at: //github.com/Zhijin-Ge/STM.
We consider an uplink integrated sensing and communications (ISAC) scenario where the detection of data symbols from multiple user equipment (UEs) occurs simultaneously with a three-dimensional (3D) estimation of the environment, extracted from the scattering features present in the channel state information (CSI) and utilizing the same physical layer communications air interface, as opposed to radar technologies. By exploiting a discrete (voxelated) representation of the environment, two novel ISAC schemes are derived with purpose-built message passing (MP) rules for the joint estimation of data symbols and status (filled/empty) of the discretized environment. The first relies on a modular feedback structure in which the data symbols and the environment are estimated alternately, whereas the second leverages a bilinear inference framework to estimate both variables concurrently. Both contributed methods are shown via simulations to outperform the state-of-the-art (SotA) in accurately recovering the transmitted data as well as the 3D image of the environment. An analysis of the computational complexities of the proposed methods reveals distinct advantages of each scheme, namely, that the bilinear solution exhibits a superior robustness to short pilots and channel blockages, while the alternating solution offers lower complexity with large number of UEs and superior performance in ideal conditions.
This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.
State-of-the-art rehearsal-free continual learning methods exploit the peculiarities of Vision Transformers to learn task-specific prompts, drastically reducing catastrophic forgetting. However, there is a tradeoff between the number of learned parameters and the performance, making such models computationally expensive. In this work, we aim to reduce this cost while maintaining competitive performance. We achieve this by revisiting and extending a simple transfer learning idea: learning task-specific normalization layers. Specifically, we tune the scale and bias parameters of LayerNorm for each continual learning task, selecting them at inference time based on the similarity between task-specific keys and the output of the pre-trained model. To make the classifier robust to incorrect selection of parameters during inference, we introduce a two-stage training procedure, where we first optimize the task-specific parameters and then train the classifier with the same selection procedure of the inference time. Experiments on ImageNet-R and CIFAR-100 show that our method achieves results that are either superior or on par with {the state of the art} while being computationally cheaper.
Since the beginning of this decade, several incidents report that false data injection attacks targeting intelligent connected vehicles cause huge industrial damage and loss of lives. Data Theft, Flooding, Fuzzing, Hijacking, Malware Spoofing and Advanced Persistent Threats have been immensely growing attack that leads to end-user conflict by abolishing trust on autonomous vehicle. Looking after those sensitive data that contributes to measure the localisation factors of the vehicle, conventional centralised techniques can be misused to update the legitimate vehicular status maliciously. As investigated, the existing centralized false data detection approach based on state and likelihood estimation has a reprehensible trade-off in terms of accuracy, trust, cost, and efficiency. Blockchain with Fuzzy-logic Intelligence has shown its potential to solve localisation issues, trust and false data detection challenges encountered by today's autonomous vehicular system. The proposed Blockchain-based fuzzy solution demonstrates a novel false data detection and reputation preservation technique. The illustrated proposed model filters false and anomalous data based on the vehicles' rules and behaviours. Besides improving the detection accuracy and eliminating the single point of failure, the contributions include appropriating fuzzy AI functions within the Road-side Unit node before authorizing status data by a Blockchain network. Finally, thorough experimental evaluation validates the effectiveness of the proposed model.
Network alignment (NA) is the task of finding the correspondence of nodes between two networks based on the network structure and node attributes. Our study is motivated by the fact that, since most of existing NA methods have attempted to discover all node pairs at once, they do not harness information enriched through interim discovery of node correspondences to more accurately find the next correspondences during the node matching. To tackle this challenge, we propose Grad-Align, a new NA method that gradually discovers node pairs by making full use of node pairs exhibiting strong consistency, which are easy to be discovered in the early stage of gradual matching. Specifically, Grad-Align first generates node embeddings of the two networks based on graph neural networks along with our layer-wise reconstruction loss, a loss built upon capturing the first-order and higher-order neighborhood structures. Then, nodes are gradually aligned by computing dual-perception similarity measures including the multi-layer embedding similarity as well as the Tversky similarity, an asymmetric set similarity using the Tversky index applicable to networks with different scales. Additionally, we incorporate an edge augmentation module into Grad-Align to reinforce the structural consistency. Through comprehensive experiments using real-world and synthetic datasets, we empirically demonstrate that Grad-Align consistently outperforms state-of-the-art NA methods.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.