We have developed a statistical inference method applicable to a broad range of generalized linear models (GLMs) in high-dimensional settings, where the number of unknown coefficients scales proportionally with the sample size. Although a pioneering method has been developed for logistic regression, which is a specific instance of GLMs, its direct applicability to other GLMs remains limited. In this study, we address this limitation by developing a new inference method designed for a class of GLMs with asymmetric link functions. More precisely, we first introduce a novel convex loss-based estimator and its associated system, which are essential components for the inference. We next devise a methodology for identifying parameters of the system required within the method. Consequently, we construct confidence intervals for GLMs in the high-dimensional regime. We prove that our proposal has desirable theoretical properties, such as strong consistency and exact coverage probability. Finally, we confirm the validity in experiments.
This article explains the usage of R package CausalModels, which is publicly available on the Comprehensive R Archive Network. While packages are available for sufficiently estimating causal effects, there lacks a package that provides a collection of structural models using the conventional statistical approach developed by Hern\'an and Robins (2020). CausalModels addresses this deficiency of software in R concerning causal inference by offering tools for methods that account for biases in observational data without requiring extensive statistical knowledge. These methods should not be ignored and may be more appropriate or efficient in solving particular problems. While implementations of these statistical models are distributed among a number of causal packages, CausalModels introduces a simple and accessible framework for a consistent modeling pipeline among a variety of statistical methods for estimating causal effects in a single R package. It consists of common methods including standardization, IP weighting, G-estimation, outcome regression, instrumental variables and propensity matching.
Time-to-event analysis, also known as survival analysis, aims to predict the time of occurrence of an event, given a set of features. One of the major challenges in this area is dealing with censored data, which can make learning algorithms more complex. Traditional methods such as Cox's proportional hazards model and the accelerated failure time (AFT) model have been popular in this field, but they often require assumptions such as proportional hazards and linearity. In particular, the AFT models often require pre-specified parametric distributional assumptions. To improve predictive performance and alleviate strict assumptions, there have been many deep learning approaches for hazard-based models in recent years. However, representation learning for AFT has not been widely explored in the neural network literature, despite its simplicity and interpretability in comparison to hazard-focused methods. In this work, we introduce the Deep AFT Rank-regression model for Time-to-event prediction (DART). This model uses an objective function based on Gehan's rank statistic, which is efficient and reliable for representation learning. On top of eliminating the requirement to establish a baseline event time distribution, DART retains the advantages of directly predicting event time in standard AFT models. The proposed method is a semiparametric approach to AFT modeling that does not impose any distributional assumptions on the survival time distribution. This also eliminates the need for additional hyperparameters or complex model architectures, unlike existing neural network-based AFT models. Through quantitative analysis on various benchmark datasets, we have shown that DART has significant potential for modeling high-throughput censored time-to-event data.
Difference-in-differences is without a doubt the most widely used method for evaluating the causal effect of a hypothetical intervention in the possible presence of confounding bias due to hidden factors. The approach is typically used when both pre- and post-exposure outcome measurements are available, and one can reasonably assume that the additive association of the unobserved confounder with the outcome is equal in the two exposure arms, and constant over time; a so-called parallel trends assumption. The parallel trends assumption may not be credible in many practical settings, including if the outcome is binary, a count, or polytomous, and more generally, when the unmeasured confounder exhibits non-additive effects on the distribution of the outcome, even if such effects are constant over time. We introduce an alternative approach that replaces the parallel trends assumption with an odds ratio equi-confounding assumption, which states that confounding bias for the causal effect of interest, encoded by an association between treatment and the potential outcome under no-treatment can be identified with a well-specified generalized linear model relating the pre-exposure outcome and the exposure. As the proposed method identifies any causal effect that is conceivably identified in the absence of confounding bias, including nonlinear effects such as quantile treatment effects, the approach is aptly called Universal Difference-in-differences (UDiD). Both fully parametric and more robust semiparametric UDiD estimators are described and illustrated in a real-world application concerning the causal effects of a Zika virus outbreak on birth rate in Brazil.
Statistical inference of the high-dimensional regression coefficients is challenging because the uncertainty introduced by the model selection procedure is hard to account for. A critical question remains unsettled; that is, is it possible and how to embed the inference of the model into the simultaneous inference of the coefficients? To this end, we propose a notion of simultaneous confidence intervals called the sparsified simultaneous confidence intervals. Our intervals are sparse in the sense that some of the intervals' upper and lower bounds are shrunken to zero (i.e., $[0,0]$), indicating the unimportance of the corresponding covariates. These covariates should be excluded from the final model. The rest of the intervals, either containing zero (e.g., $[-1,1]$ or $[0,1]$) or not containing zero (e.g., $[2,3]$), indicate the plausible and significant covariates, respectively. The proposed method can be coupled with various selection procedures, making it ideal for comparing their uncertainty. For the proposed method, we establish desirable asymptotic properties, develop intuitive graphical tools for visualization, and justify its superior performance through simulation and real data analysis.
The proliferation of automated data collection schemes and the advances in sensorics are increasing the amount of data we are able to monitor in real-time. However, given the high annotation costs and the time required by quality inspections, data is often available in an unlabeled form. This is fostering the use of active learning for the development of soft sensors and predictive models. In production, instead of performing random inspections to obtain product information, labels are collected by evaluating the information content of the unlabeled data. Several query strategy frameworks for regression have been proposed in the literature but most of the focus has been dedicated to the static pool-based scenario. In this work, we propose a new strategy for the stream-based scenario, where instances are sequentially offered to the learner, which must instantaneously decide whether to perform the quality check to obtain the label or discard the instance. The approach is inspired by the optimal experimental design theory and the iterative aspect of the decision-making process is tackled by setting a threshold on the informativeness of the unlabeled data points. The proposed approach is evaluated using numerical simulations and the Tennessee Eastman Process simulator. The results confirm that selecting the examples suggested by the proposed algorithm allows for a faster reduction in the prediction error.
Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method.
We introduce a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on estimating equations that are $U$-statistics in the observations. The $U$-statistics are based on higher order influence functions that extend ordinary linear influence functions of the parameter of interest, and represent higher derivatives of this parameter. For parameters for which the representation cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than $\sqrt n$-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at $\sqrt n$-rate, but we also consider efficient $\sqrt n$-estimation using novel nonlinear estimators. The general approach is applied in detail to the example of estimating a mean response when the response is not always observed.
In Statistical Relational Artificial Intelligence, a branch of AI and machine learning which combines the logical and statistical schools of AI, one uses the concept {\em para\-metrized probabilistic graphical model (PPGM)} to model (conditional) dependencies between random variables and to make probabilistic inferences about events on a space of "possible worlds". The set of possible worlds with underlying domain $D$ (a set of objects) can be represented by the set $\mathbf{W}_D$ of all first-order structures (for a suitable signature) with domain $D$. Using a formal logic we can describe events on $\mathbf{W}_D$. By combining a logic and a PPGM we can also define a probability distribution $\mathbb{P}_D$ on $\mathbf{W}_D$ and use it to compute the probability of an event. We consider a logic, denoted $PLA$, with truth values in the unit interval, which uses aggregation functions, such as arithmetic mean, geometric mean, maximum and minimum instead of quantifiers. However we face the problem of computational efficiency and this problem is an obstacle to the wider use of methods from Statistical Relational AI in practical applications. We address this problem by proving that the described probability will, under certain assumptions on the PPGM and the sentence $\varphi$, converge as the size of $D$ tends to infinity. The convergence result is obtained by showing that every formula $\varphi(x_1, \ldots, x_k)$ which contains only "admissible" aggregation functions (e.g. arithmetic and geometric mean, max and min) is asymptotically equivalent to a formula $\psi(x_1, \ldots, x_k)$ without aggregation functions.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.