亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inspired by the swarming or flocking of animal systems we study groups of agents moving in unbounded 2D space. Individual trajectories derive from a ``bottom-up'' principle: individuals reorient to maximise their future path entropy over environmental states. This can be seen as a proxy for keeping options open, a principle that may confer evolutionary fitness in an uncertain world. We find an ordered (co-aligned) state naturally emerges, as well as disordered states or rotating clusters; similar phenotypes are observed in birds, insects and fish, respectively. The ordered state exhibits an order-disorder transition under two forms of noise: (i) standard additive orientational noise, applied to the post-decision orientations (ii) ``cognitive'' noise, overlaid onto each individual's model of the future paths of other agents. Unusually, the order increases at low noise, before later decreasing through the order-disorder transition as the noise increases further.

相關內容

In this paper, we address the problem of fair sharing of the total value of a crowd-sourced network system between major participants (founders) and minor participants (crowd) using cooperative game theory. Shapley allocation is regarded as a fair way for computing the shares of all participants in a cooperative game when the values of all possible coalitions could be quantified. We define a class of value functions for crowd-sourced systems which capture the contributions of the founders and the crowd plausibly and derive closed-form expressions for Shapley allocations to both. These value functions are defined for different scenarios, such as presence of oligopolies or geographic spread of the crowd, taking network effects, including Metcalfe's law, into account. A key result we obtain is that under quite general conditions, the crowd participants are collectively owed a share between $\frac{1}{2}$ to $\frac{2}{3}$ of the total value of the crowd-sourced system. We close with an empirical analysis demonstrating consistency of our results with the compensation offered to the crowd participants in some public internet content sharing companies.

Active search, in applications like environment monitoring or disaster response missions, involves autonomous agents detecting targets in a search space using decision making algorithms that adapt to the history of their observations. Active search algorithms must contend with two types of uncertainty: detection uncertainty and location uncertainty. The more common approach in robotics is to focus on location uncertainty and remove detection uncertainty by thresholding the detection probability to zero or one. In contrast, it is common in the sparse signal processing literature to assume the target location is accurate and instead focus on the uncertainty of its detection. In this work, we first propose an inference method to jointly handle both target detection and location uncertainty. We then build a decision making algorithm on this inference method that uses Thompson sampling to enable decentralized multi-agent active search. We perform simulation experiments to show that our algorithms outperform competing baselines that only account for either target detection or location uncertainty. We finally demonstrate the real world transferability of our algorithms using a realistic simulation environment we created on the Unreal Engine 4 platform with an AirSim plugin.

Even though existence of non-convergent evolution of the states of populations in ecological and evolutionary contexts is an undeniable fact, insightful game-theoretic interpretations of such outcomes are scarce in the literature of evolutionary game theory. As a proof-of-concept, we tap into the information-theoretic concept of relative entropy in order to construct a game-theoretic interpretation for periodic orbits in a wide class of deterministic discrete-time evolutionary game dynamics, primarily investigating the two-player two-strategy case. Effectively, we present a consistent generalization of the evolutionarily stable strategy -- the cornerstone of the evolutionary game theory -- and aptly term the generalized concept: information stable orbit. The information stable orbit captures the essence of the evolutionarily stable strategy in that it compares the total payoff obtained against an evolving mutant with the total payoff that the mutant gets while playing against itself. Furthermore, we discuss the connection of the information stable orbit with the dynamical stability of the corresponding periodic orbit.

Training a robust policy is critical for policy deployment in real-world systems or dealing with unknown dynamics mismatch in different dynamic systems. Domain Randomization~(DR) is a simple and elegant approach that trains a conservative policy to counter different dynamic systems without expert knowledge about the target system parameters. However, existing works reveal that the policy trained through DR tends to be over-conservative and performs poorly in target domains. Our key insight is that dynamic systems with different parameters provide different levels of difficulty for the policy, and the difficulty of behaving well in a system is constantly changing due to the evolution of the policy. If we can actively sample the systems with proper difficulty for the policy on the fly, it will stabilize the training process and prevent the policy from becoming over-conservative or over-optimistic. To operationalize this idea, we introduce Active Dynamics Preference~(ADP), which quantifies the informativeness and density of sampled system parameters. ADP actively selects system parameters with high informativeness and low density. We validate our approach in four robotic locomotion tasks with various discrepancies between the training and testing environments. Extensive results demonstrate that our approach has superior robustness for system inconsistency compared to several baselines.

Social dilemmas are situations where groups of individuals can benefit from mutual cooperation but conflicting interests impede them from doing so. This type of situations resembles many of humanity's most critical challenges, and discovering mechanisms that facilitate the emergence of cooperative behaviors is still an open problem. In this paper, we study the behavior of self-interested rational agents that learn world models in a multi-agent reinforcement learning (RL) setting and that coexist in environments where social dilemmas can arise. Our simulation results show that groups of agents endowed with world models outperform all the other tested ones when dealing with scenarios where social dilemmas can arise. We exploit the world model architecture to qualitatively assess the learnt dynamics and confirm that each agent's world model is capable to encode information of the behavior of the changing environment and the other agent's actions. This is the first work that shows that world models facilitate the emergence of complex coordinated behaviors that enable interacting agents to ``understand'' both environmental and social dynamics.

Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics whose energy consumption depends on the number of spikes exchanged between neurons over the course of the input presentation. In typical implementations of an SNN classifier, decisions are produced after the entire input sequence has been processed, resulting in latency and energy consumption levels that are fairly uniform across inputs. Recently introduced delay-adaptive SNNs tailor the inference latency -- and, with it, the energy consumption -- to the difficulty of each example, by producing an early decision when the SNN model is sufficiently ``confident''. In this paper, we start by observing that, as an SNN processes input samples, its classification decisions tend to be first under-confident and then over-confident with respect to the decision's ground-truth, unknown, test accuracy. This makes it difficult to determine a stopping time that ensures a desired level of accuracy. To address this problem, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach entails minimal added complexity as compared to the underlying SNN, requiring only thresholding and counting operations at run time, and it leverages tools from conformal prediction (CP).

In this dataset we provide a comprehensive collection of magnetograms (images quantifying the strength of the magnetic field) from the National Aeronautics and Space Administration's (NASA's) Solar Dynamics Observatory (SDO). The dataset incorporates data from three sources and provides SDO Helioseismic and Magnetic Imager (HMI) magnetograms of solar active regions (regions of large magnetic flux, generally the source of eruptive events) as well as labels of corresponding flaring activity. This dataset will be useful for image analysis or solar physics research related to magnetic structure, its evolution over time, and its relation to solar flares. The dataset will be of interest to those researchers investigating automated solar flare prediction methods, including supervised and unsupervised machine learning (classical and deep), binary and multi-class classification, and regression. This dataset is a minimally processed, user configurable dataset of consistently sized images of solar active regions that can serve as a benchmark dataset for solar flare prediction research.

Data collection through the Internet of Things (IoT) devices, or smart devices, in commercial buildings enables possibilities for increased convenience and energy efficiency. However, such benefits face a large perceptual challenge when being implemented in practice, due to the different ways occupants working in the buildings understand and trust in the data collection. The semi-public, pervasive, and multi-modal nature of data collection in smart buildings points to the need to study occupants' understanding of data collection and notification preferences. We conduct an online study with 492 participants in the US who report working in smart commercial buildings regarding: 1) awareness and perception of data collection in smart commercial buildings, 2) privacy notification preferences, and 3) potential factors for privacy notification preferences. We find that around half of the participants are not fully aware of the data collection and use practices of IoT even though they notice the presence of IoT devices and sensors. We also discover many misunderstandings around different data practices. The majority of participants want to be notified of data practices in smart buildings, and they prefer push notifications to passive ones such as websites or physical signs. Surprisingly, mobile app notification, despite being a popular channel for smart homes, is the least preferred method for smart commercial buildings.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.

北京阿比特科技有限公司