Power priors are used for incorporating historical data in Bayesian analyses by taking the likelihood of the historical data raised to the power $\alpha$ as the prior distribution for the model parameters. The power parameter $\alpha$ is typically unknown and assigned a prior distribution, most commonly a beta distribution. Here, we give a novel theoretical result on the resulting marginal posterior distribution of $\alpha$ in case of the the normal and binomial model. Counterintuitively, when the current data perfectly mirror the historical data and the sample sizes from both data sets become arbitrarily large, the marginal posterior of $\alpha$ does not converge to a point mass at $\alpha = 1$ but approaches a distribution that hardly differs from the prior. The result implies that a complete pooling of historical and current data is impossible if a power prior with beta prior for $\alpha$ is used.
Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems can help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech, which is not readily available for dysarthric talkers. This paper presents a new dysarthric speech synthesis method for the purpose of ASR training data augmentation. Differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels are important components for dysarthric speech modeling, synthesis, and augmentation. For dysarthric speech synthesis, a modified neural multi-talker TTS is implemented by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. To evaluate the effectiveness for synthesis of training data for ASR, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has significant impact on the dysarthric ASR systems. In addition, we have conducted a subjective evaluation to evaluate the dysarthric-ness and similarity of synthesized speech. Our subjective evaluation shows that the perceived dysartrhic-ness of synthesized speech is similar to that of true dysarthric speech, especially for higher levels of dysarthria
We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.
Confidence intervals based on the central limit theorem (CLT) are a cornerstone of classical statistics. Despite being only asymptotically valid, they are ubiquitous because they permit statistical inference under very weak assumptions, and can often be applied to problems even when nonasymptotic inference is impossible. This paper introduces time-uniform analogues of such asymptotic confidence intervals. To elaborate, our methods take the form of confidence sequences (CS) -- sequences of confidence intervals that are uniformly valid over time. CSs provide valid inference at arbitrary stopping times, incurring no penalties for "peeking" at the data, unlike classical confidence intervals which require the sample size to be fixed in advance. Existing CSs in the literature are nonasymptotic, and hence do not enjoy the aforementioned broad applicability of asymptotic confidence intervals. Our work bridges the gap by giving a definition for "asymptotic CSs", and deriving a universal asymptotic CS that requires only weak CLT-like assumptions. While the CLT approximates the distribution of a sample average by that of a Gaussian at a fixed sample size, we use strong invariance principles (stemming from the seminal 1960s work of Strassen and improvements by Koml\'os, Major, and Tusn\'ady) to uniformly approximate the entire sample average process by an implicit Gaussian process. As an illustration of our theory, we derive asymptotic CSs for the average treatment effect using efficient estimators in observational studies (for which no nonasymptotic bounds can exist even in the fixed-time regime) as well as randomized experiments, enabling causal inference that can be continuously monitored and adaptively stopped.
We develop the no-propagate algorithm for sampling the linear response of random dynamical systems, which are non-uniform hyperbolic deterministic systems perturbed by noise with smooth density. We first derive a Monte-Carlo type formula and then the algorithm, which is different from the ensemble (stochastic gradient) algorithms, finite-element algorithms, and fast-response algorithms; it does not involve the propagation of vectors or covectors, and only the density of the noise is differentiated, so the formula is not cursed by gradient explosion, dimensionality, or non-hyperbolicity. We demonstrate our algorithm on a tent map perturbed by noise and a chaotic neural network with 51 layers $\times$ 9 neurons. By itself, this algorithm approximates the linear response of non-hyperbolic deterministic systems, with an additional error proportional to the noise. We also discuss the potential of using this algorithm as a part of a bigger algorithm with smaller error.
We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear logic where the exponential modality ! is interpreted as a constructor for streams over finite data. Logical consistency is maintained at a global level by adapting a standard progressing criterion. We present an infinitary version of cut-elimination based on finite approximations, and we prove that, in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit. Furthermore, we show that cut-elimination preserves the progressive criterion and various regularity conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational semantics for our systems based on the relational model.
Making inference with spatial extremal dependence models can be computationally burdensome since they involve intractable and/or censored likelihoods. Building on recent advances in likelihood-free inference with neural Bayes estimators, that is, neural networks that approximate Bayes estimators, we develop highly efficient estimators for censored peaks-over-threshold models that encode censoring information in the neural network architecture. Our new method provides a paradigm shift that challenges traditional censored likelihood-based inference methods for spatial extremal dependence models. Our simulation studies highlight significant gains in both computational and statistical efficiency, relative to competing likelihood-based approaches, when applying our novel estimators to make inference with popular extremal dependence models, such as max-stable, $r$-Pareto, and random scale mixture process models. We also illustrate that it is possible to train a single neural Bayes estimator for a general censoring level, precluding the need to retrain the network when the censoring level is changed. We illustrate the efficacy of our estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial extremal dependence models to assess extreme particulate matter 2.5 microns or less in diameter (PM2.5) concentration over the whole of Saudi Arabia.
Pseudo-labeling is a crucial technique in semi-supervised learning (SSL), where artificial labels are generated for unlabeled data by a trained model, allowing for the simultaneous training of labeled and unlabeled data in a supervised setting. However, several studies have identified three main issues with pseudo-labeling-based approaches. Firstly, these methods heavily rely on predictions from the trained model, which may not always be accurate, leading to a confirmation bias problem. Secondly, the trained model may be overfitted to easy-to-learn examples, ignoring hard-to-learn ones, resulting in the \textit{"Matthew effect"} where the already strong become stronger and the weak weaker. Thirdly, most of the low-confidence predictions of unlabeled data are discarded due to the use of a high threshold, leading to an underutilization of unlabeled data during training. To address these issues, we propose a new method called ReFixMatch, which aims to utilize all of the unlabeled data during training, thus improving the generalizability of the model and performance on SSL benchmarks. Notably, ReFixMatch achieves 41.05\% top-1 accuracy with 100k labeled examples on ImageNet, outperforming the baseline FixMatch and current state-of-the-art methods.
We propose a penalized least-squares method to fit the linear regression model with fitted values that are invariant to invertible linear transformations of the design matrix. This invariance is important, for example, when practitioners have categorical predictors and interactions. Our method has the same computational cost as ridge-penalized least squares, which lacks this invariance. We derive the expected squared distance between the vector of population fitted values and its shrinkage estimator as well as the tuning parameter value that minimizes this expectation. In addition to using cross validation, we construct two estimators of this optimal tuning parameter value and study their asymptotic properties. Our numerical experiments and data examples show that our method performs similarly to ridge-penalized least-squares.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.