亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the present paper, we examine a Crouzeix-Raviart approximation of the $p(\cdot)$-Dirichlet problem. We derive a $\textit{medius}$ error estimate, $\textit{i.e.}$, a best-approximation result, which holds for uniformly continuous exponents and implies $\textit{a priori}$ error estimates, which apply for H\"older continuous exponents and are optimal for Lipschitz continuous exponents. Numerical experiments are carried out to review the theoretical findings.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We introduce a novel evaluation framework for Large Language Models (LLMs) such as \textsc{Llama-2} and \textsc{Mistral}, focusing on importing Precision and Recall metrics from image generation to text generation. This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora. By conducting a comprehensive evaluation of state-of-the-art language models, the study reveals new insights into their performance on open-ended generation tasks, which are not adequately captured by traditional benchmarks. The findings highlight a trade-off between the quality and diversity of generated samples, particularly when models are fine-tuned on instruction dataset or with human feedback. This work extends the toolkit for distribution-based NLP evaluation, offering insights into the practical capabilities and challenges that current LLMs face in generating diverse and high-quality text. We release our code and data.

Given two matrices $X,B\in \mathbb{R}^{n\times m}$ and a set $\mathcal{A}\subseteq \mathbb{R}^{n\times n}$, a Procrustes problem consists in finding a matrix $A \in \mathcal{A}$ such that the Frobenius norm of $AX-B$ is minimized. When $\mathcal{A}$ is the set of the matrices whose symmetric part is positive semidefinite, we obtain the so-called non-symmetric positive semidefinite Procrustes (NSPDSP) problem. The NSPDSP problem arises in the estimation of compliance or stiffness matrix in solid and elastic structures. If $X$ has rank $r$, Baghel et al. (Lin. Alg. Appl., 2022) proposed a three-step semi-analytical approach: (1) construct a reduced NSPDSP problem in dimension $r\times r$, (2) solve the reduced problem by means of a fast gradient method with a linear rate of convergence, and (3) post-process the solution of the reduced problem to construct a solution of the larger original NSPDSP problem. In this paper, we revisit this approach of Baghel et al. and identify an unnecessary assumption used by the authors leading to cases where their algorithm cannot attain a minimum and produces solutions with unbounded norm. In fact, revising the post-processing phase of their semi-analytical approach, we show that the infimum of the NSPDSP problem is always attained, and we show how to compute a minimum-norm solution. We also prove that the symmetric part of the computed solution has minimum rank bounded by $r$, and that the skew-symmetric part has rank bounded by $2r$. Several numerical examples show the efficiency of this algorithm, both in terms of computational speed and of finding optimal minimum-norm solutions.

Linear complementary dual (LCD) codes can be used to against side-channel attacks and fault noninvasive attacks. Let $d_{a}(n,6)$ and $d_{l}(n,6)$ be the minimum weights of all binary optimal linear codes and LCD codes with length $n$ and dimension 6, respectively.In this article, we aim to obtain the values of $d_{l}(n,6)$ for $n\geq 51$ by investigating the nonexistence and constructions of LCD codes with given parameters. Suppose that $s \ge 0$ and $0\leq t\leq 62$ are two integers and $n=63s+t$. Using the theories of defining vectors, generalized anti-codes, reduced codes and nested codes, we exactly determine $d_{l}(n,6)$ for $t \notin\{21,22,25,26,33,34,37,38,45,46\}$, while we show that $d_{l}(n,6)\in$$\{d_{a}(n,6)$ $-1,d_{a}(n,6)\}$ for $t\in\{21,22,26,34,37,38,46\}$ and $ d_{l}(n,6)\in$$ \{d_{a}(n,6)-2,$ $d_{a}(n,6)-1\}$ for$t\in{25,33,45\}$.

It is well known that the independent random variables $X$ and $Y$ are uncorrelated in the sense $E[XY]=E[X]\cdot E[Y]$ and that the implication may be reversed in very specific cases only. This paper proves that under general assumptions the conditional uncorrelation of random variables, where the conditioning takes place over the suitable class of test sets, is equivalent to the independence. It is also shown that the mutual independence of $X_1,\dots,X_n$ is equivalent to the fact that any conditional correlation matrix equals to the identity matrix.

The doubly minimized Petz Renyi mutual information of order $\alpha$ is defined as the minimization of the Petz divergence of order $\alpha$ of a fixed bipartite quantum state relative to any product state. In this work, we establish several properties of this type of Renyi mutual information, including its additivity for $\alpha\in [1/2,2]$. As an application, we show that the direct exponent of certain binary quantum state discrimination problems is determined by the doubly minimized Petz Renyi mutual information of order $\alpha\in (1/2,1)$. This provides an operational interpretation of this type of Renyi mutual information, and generalizes a previous result for classical probability distributions to the quantum setting.

We study interpolation inequalities between H\"older Integral Probability Metrics (IPMs) in the case where the measures have densities on closed submanifolds. Precisely, it is shown that if two probability measures $\mu$ and $\mu^\star$ have $\beta$-smooth densities with respect to the volume measure of some submanifolds $\mathcal{M}$ and $\mathcal{M}^\star$ respectively, then the H\"older IPMs $d_{\mathcal{H}^\gamma_1}$ of smoothness $\gamma\geq 1$ and $d_{\mathcal{H}^\eta_1}$ of smoothness $\eta>\gamma$, satisfy $d_{ \mathcal{H}_1^{\gamma}}(\mu,\mu^\star)\lesssim d_{ \mathcal{H}_1^{\eta}}(\mu,\mu^\star)^\frac{\beta+\gamma}{\beta+\eta}$, up to logarithmic factors. We provide an application of this result to high-dimensional inference. These functional inequalities turn out to be a key tool for density estimation on unknown submanifold. In particular, it allows to build the first estimator attaining optimal rates of estimation for all the distances $d_{\mathcal{H}_1^\gamma}$, $\gamma \in [1,\infty)$ simultaneously.

We study the eigenvalue distribution and resolvent of a Kronecker-product random matrix model $A \otimes I_{n \times n}+I_{n \times n} \otimes B+\Theta \otimes \Xi \in \mathbb{C}^{n^2 \times n^2}$, where $A,B$ are independent Wigner matrices and $\Theta,\Xi$ are deterministic and diagonal. For fixed spectral arguments, we establish a quantitative approximation for the Stieltjes transform by that of an approximating free operator, and a diagonal deterministic equivalent approximation for the resolvent. We further obtain sharp estimates in operator norm for the $n \times n$ resolvent blocks, and show that off-diagonal resolvent entries fall on two differing scales of $n^{-1/2}$ and $n^{-1}$ depending on their locations in the Kronecker structure. Our study is motivated by consideration of a matrix-valued least-squares optimization problem $\min_{X \in \mathbb{R}^{n \times n}} \frac{1}{2}\|XA+BX\|_F^2+\frac{1}{2}\sum_{ij} \xi_i\theta_j x_{ij}^2$ subject to a linear constraint. For random instances of this problem defined by Wigner inputs $A,B$, our analyses imply an asymptotic characterization of the minimizer $X$ and its associated minimum objective value as $n \to \infty$.

In this article, we propose a new classification of $\Sigma^0_2$ formulas under the realizability interpretation of many-one reducibility (i.e., Levin reducibility). For example, ${\sf Fin}$, the decision of being eventually zero for sequences, is many-one/Levin complete among $\Sigma^0_2$ formulas of the form $\exists n\forall m\geq n.\varphi(m,x)$, where $\varphi$ is decidable. The decision of boundedness for sequences ${\sf BddSeq}$ and for width of posets ${\sf FinWidth}$ are many-one/Levin complete among $\Sigma^0_2$ formulas of the form $\exists n\forall m\geq n\forall k.\varphi(m,k,x)$, where $\varphi$ is decidable. However, unlike the classical many-one reducibility, none of the above is $\Sigma^0_2$-complete. The decision of non-density of linear order ${\sf NonDense}$ is truly $\Sigma^0_2$-complete.

We consider the weak convergence of the Euler-Maruyama approximation for Schr\"odinger-F\"ollmer diffusions, which are solutions of Schr\"odinger bridge problems and can be used for sampling from given distributions. We show that the distribution of the terminal random variable of the time-discretized process weakly converges to the target one under mild regularity conditions.

For integers $k\geq 1$ and $n\geq 2k+1$, the Schrijver graph $S(n,k)$ has as vertices all $k$-element subsets of $[n]:=\{1,2,\ldots,n\}$ that contain no two cyclically adjacent elements, and an edge between any two disjoint sets. More generally, for integers $k\geq 1$, $s\geq 2$, and $n \geq sk+1$, the $s$-stable Kneser graph $S(n,k,s)$ has as vertices all $k$-element subsets of $[n]$ in which any two elements are in cyclical distance at least $s$. We prove that all the graphs $S(n,k,s)$, in particular Schrijver graphs $S(n,k)=S(n,k,2)$, admit a Hamilton cycle that can be computed in time $\mathcal{O}(n)$ per generated vertex.

北京阿比特科技有限公司