亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many areas of science make extensive use of computer simulators that implicitly encode intractable likelihood functions of complex systems. Classical statistical methods are poorly suited for these so-called likelihood-free inference (LFI) settings, especially outside asymptotic and low-dimensional regimes. At the same time, traditional LFI methods - such as Approximate Bayesian Computation or more recent machine learning techniques - do not guarantee confidence sets with nominal coverage in general settings (i.e., with high-dimensional data, finite sample sizes, and for any parameter value). In addition, there are no diagnostic tools to check the empirical coverage of confidence sets provided by such methods across the entire parameter space. In this work, we propose a unified and modular inference framework that bridges classical statistics and modern machine learning providing (i) a practical approach to the Neyman construction of confidence sets with frequentist finite-sample coverage for any value of the unknown parameters; and (ii) interpretable diagnostics that estimate the empirical coverage across the entire parameter space. We refer to the general framework as likelihood-free frequentist inference (LF2I). Any method that defines a test statistic can leverage LF2I to create valid confidence sets and diagnostics without costly Monte Carlo samples at fixed parameter settings. We study the power of two likelihood-based test statistics (ACORE and BFF) and demonstrate their empirical performance on high-dimensional, complex data. Code is available at //github.com/lee-group-cmu/lf2i.

相關內容

Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: //github.com/EfficientTraining/LabelBench.

Next-generation communication networks are expected to exploit recent advances in data science and cutting-edge communications technologies to improve the utilization of the available communications resources. In this article, we introduce an emerging deep learning (DL) architecture, the transformer-masked autoencoder (TMAE), and discuss its potential in next-generation wireless networks. We discuss the limitations of current DL techniques in meeting the requirements of 5G and beyond 5G networks, and how the TMAE differs from the classical DL techniques can potentially address several wireless communication problems. We highlight various areas in next-generation mobile networks which can be addressed using a TMAE, including source and channel coding, estimation, and security. Furthermore, we demonstrate a case study showing how a TMAE can improve data compression performance and complexity compared to existing schemes. Finally, we discuss key challenges and open future research directions for deploying the TMAE in intelligent next-generation mobile networks.

Dark patterns are often used in interface design to manipulate users into performing actions they would otherwise not take, such as consenting to excessive data collection. We present a narrative serious game concept, along with seven game-adapted dark patterns designed to create awareness of and bolster resistance against dark patterns through direct consequences of player actions. We performed a qualitative, exploratory study investigating player behavior when confronted with game-adapted dark patterns. A thematic analysis provides insights into influencing factors for adapting dark patterns into gameplay, as well as player motivations and driving forces influencing player behavior.

The field of edge computing has witnessed remarkable growth owing to the increasing demand for real-time processing of data in applications. However, challenges persist due to limitations in performance and power consumption. To overcome these challenges, heterogeneous architectures have emerged that combine host processors with specialized accelerators tailored to specific applications, leading to improved performance and reduced power consumption. However, most of the existing platforms lack the necessary configurability and extendability options for integrating custom accelerators. To overcome these limitations, we introduce in this paper the eXtendible Heterogeneous Energy-Efficient Platform (X-HEEP). X-HEEP is an open-source platform designed to natively support the integration of ultra-low-power edge accelerators. It provides customization options to match specific application requirements by exploring various core types, bus topologies, addressing modes, memory sizes, and peripherals. Moreover, the platform prioritizes energy efficiency by implementing low-power strategies, such as clock-gating and power-gating. We demonstrate the real-world applicability of X-HEEP by providing an integration example tailored for healthcare applications that includes a coarse-grained reconfigurable array (CGRA) and in-memory computing (IMC) accelerators. The resulting design, called HEEPocrates, has been implemented both in field programmable gate array (FPGA) on the Xilinx Zynq-7020 chip and in silicon with TSMC 65 nm low-power CMOS technology. We run a set of healthcare applications and measure their energy consumption to demonstrate the alignment of our chip with other state-of-the-art microcontrollers commonly adopted in this domain. Moreover, we showcase the energy benefit of 4.9 x gained by exploiting the integrated CGRA accelerator, compared to running on the host CPU.

Transfer learning (TL) is an increasingly popular approach to training deep learning (DL) models that leverages the knowledge gained by training a foundation model on diverse, large-scale datasets for use on downstream tasks where less domain- or task-specific data is available. The literature is rich with TL techniques and applications; however, the bulk of the research makes use of deterministic DL models which are often uncalibrated and lack the ability to communicate a measure of epistemic (model) uncertainty in prediction. Unlike their deterministic counterparts, Bayesian DL (BDL) models are often well-calibrated, provide access to epistemic uncertainty for a prediction, and are capable of achieving competitive predictive performance. In this study, we propose variational inference pre-trained audio neural networks (VI-PANNs). VI-PANNs are a variational inference variant of the popular ResNet-54 architecture which are pre-trained on AudioSet, a large-scale audio event detection dataset. We evaluate the quality of the resulting uncertainty when transferring knowledge from VI-PANNs to other downstream acoustic classification tasks using the ESC-50, UrbanSound8K, and DCASE2013 datasets. We demonstrate, for the first time, that it is possible to transfer calibrated uncertainty information along with knowledge from upstream tasks to enhance a model's capability to perform downstream tasks.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

北京阿比特科技有限公司