Voice based Intelligent Virtual Assistants (IVAs) promise to improve healthcare management and Quality of Life (QOL) by introducing the paradigm of hands free and eye free interactions. However, there has been little understanding regarding the challenges for designing such systems for older adults, especially when it comes to healthcare related tasks. To tackle this, we consider the processes of care delivery and QOL enhancements for older adults as a collaborative task between patients and providers. By interviewing 16 older adults living independently or semi independently and 5 providers, we identified 12 barriers that older adults might encounter during daily routine and while managing health. We ultimately highlighted key design challenges and opportunities that might be introduced when integrating voice based IVAs into the life of older adults. Our work will benefit practitioners who study and attempt to create full fledged IVA powered smart devices to deliver better care and support an increased QOL for aging populations.
This paper details the theory and implementation behind practically ensuring safety of remotely piloted racing drones. We demonstrate robust and practical safety guarantees on a 7" racing drone at speeds exceeding 100 km/h, utilizing only online computations on a 10 gram micro-controller. To achieve this goal, we utilize the framework of control barrier functions (CBFs) which give guaranteed safety encoded as forward set invariance. To make this methodology practically applicable, we present an implicitly defined CBF which leverages backup controllers to enable gradient-free evaluations that ensure safety. The method applied to hardware results in smooth, minimally conservative alterations of the pilots' desired inputs, enabling them to push the limits of their drone without fear of crashing. Moreover, the method works in conjunction with the preexisting flight controller, resulting in unaltered flight when there are no nearby safety risks. Additional benefits include safety and stability of the drone when losing line-of-sight or in the event of radio failure.
AI-based systems have been used widely across various industries for different decisions ranging from operational decisions to tactical and strategic ones in low- and high-stakes contexts. Gradually the weaknesses and issues of these systems have been publicly reported including, ethical issues, biased decisions, unsafe outcomes, and unfair decisions, to name a few. Research has tended to optimize AI less has focused on its risk and unexpected negative consequences. Acknowledging this serious potential risks and scarcity of re-search I focus on unsafe outcomes of AI. Specifically, I explore this issue from a Human-AI interaction lens during AI deployment. It will be discussed how the interaction of individuals and AI during its deployment brings new concerns, which need a solid and holistic mitigation plan. It will be dis-cussed that only AI algorithms' safety is not enough to make its operation safe. The AI-based systems' end-users and their decision-making archetypes during collaboration with these systems should be considered during the AI risk management. Using some real-world scenarios, it will be highlighted that decision-making archetypes of users should be considered a design principle in AI-based systems.
Engaging with natural environments and representations of nature has been shown to improve mood states and reduce cognitive decline in older adults. The current study evaluated the use of virtual reality (VR) for presenting immersive 360 degree nature videos and a digitally designed interactive garden for this purpose. Fifty participants (age 60 plus), with varied cognitive and physical abilities, were recruited. Data were collected through pre/post-intervention surveys, standardized observations during the interventions, and post-intervention semi structured interviews. The results indicated significant improvements in attitudes toward VR and in some aspects of mood and engagement. The responses to the environment did not significantly differ among participants with different cognitive abilities; however, those with physical disabilities expressed stronger positive reactions on some metrics compared to participants without disabilities. Almost no negative impacts (cybersickness, task frustration) were found. In the interviews some participants expressed resistance to the technology, in particular the digital garden, indicating that it felt cartoonish or unappealing and that it could not substitute for real nature. However, the majority felt that the VR experiences could be a beneficial activity in situations when real-world contact with nature was not immediately feasible.
While AI has benefited humans, it may also harm humans if not appropriately developed. The focus of HCI work is transiting from conventional human interaction with non-AI computing systems to interaction with AI systems. We conducted a high-level literature review and a holistic analysis of current work in developing AI systems from an HCI perspective. Our review and analysis highlight the new changes introduced by AI technology and the new challenges that HCI professionals face when applying the human-centered AI (HCAI) approach in the development of AI systems. We also identified seven main issues in human interaction with AI systems, which HCI professionals did not encounter when developing non-AI computing systems. To further enable the implementation of the HCAI approach, we identified new HCI opportunities tied to specific HCAI-driven design goals to guide HCI professionals in addressing these new issues. Finally, our assessment of current HCI methods shows the limitations of these methods in support of developing AI systems. We propose alternative methods that can help overcome these limitations and effectively help HCI professionals apply the HCAI approach to the development of AI systems. We also offer strategic recommendations for HCI professionals to effectively influence the development of AI systems with the HCAI approach, eventually developing HCAI systems.
Torsades de pointes (TdP) is an irregular heart rhythm characterized by faster beat rates and potentially could lead to sudden cardiac death. Much effort has been invested in understanding the drug-induced TdP in preclinical studies. However, a comprehensive statistical learning framework that can accurately predict the drug-induced TdP risk from preclinical data is still lacking. We proposed ordinal logistic regression and ordinal random forest models to predict low-, intermediate-, and high-risk drugs based on datasets generated from two experimental protocols. Leave-one-drug-out cross-validation, stratified bootstrap, and permutation predictor importance were applied to estimate and interpret the model performance under uncertainty. The potential outlier drugs identified by our models are consistent with their descriptions in the literature. Our method is accurate, interpretable, and thus useable as supplemental evidence in the drug safety assessment.
Vision plays a crucial role in comprehending the world around us. More than 85% of the external information is obtained through the vision system. It influences our mobility, cognition, information access, and interaction with the environment and other people. Blindness prevents a person from gaining knowledge of the surrounding environment and makes unassisted navigation, object recognition, obstacle avoidance, and reading tasks significant challenges. Many existing systems are often limited by cost and complexity. To help the visually challenged overcome these difficulties faced in everyday life, we propose VisBuddy, a smart assistant to help the visually challenged with their day-to-day activities. VisBuddy is a voice-based assistant where the user can give voice commands to perform specific tasks. It uses the techniques of image captioning for describing the user's surroundings, optical character recognition (OCR) for reading the text in the user's view, object detection to search and find the objects in a room and web scraping to give the user the latest news. VisBuddy has been built by combining the concepts from Deep Learning and the Internet of Things. Thus, VisBuddy serves as a cost-efficient, powerful, all-in-one assistant for the visually challenged by helping them with their day-to-day activities.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Federated Learning (FL) is a concept first introduced by Google in 2016, in which multiple devices collaboratively learn a machine learning model without sharing their private data under the supervision of a central server. This offers ample opportunities in critical domains such as healthcare, finance etc, where it is risky to share private user information to other organisations or devices. While FL appears to be a promising Machine Learning (ML) technique to keep the local data private, it is also vulnerable to attacks like other ML models. Given the growing interest in the FL domain, this report discusses the opportunities and challenges in federated learning.
There is a need for systems to dynamically interact with ageing populations to gather information, monitor health condition and provide support, especially after hospital discharge or at-home settings. Several smart devices have been delivered by digital health, bundled with telemedicine systems, smartphone and other digital services. While such solutions offer personalised data and suggestions, the real disruptive step comes from the interaction of new digital ecosystem, represented by chatbots. Chatbots will play a leading role by embodying the function of a virtual assistant and bridging the gap between patients and clinicians. Powered by AI and machine learning algorithms, chatbots are forecasted to save healthcare costs when used in place of a human or assist them as a preliminary step of helping to assess a condition and providing self-care recommendations. This paper describes integrating chatbots into telemedicine systems intended for elderly patient after their hospital discharge. The paper discusses possible ways to utilise chatbots to assist healthcare providers and support patients with their condition.
Crowd-powered conversational assistants have been shown to be more robust than automated systems, but do so at the cost of higher response latency and monetary costs. A promising direction is to combine the two approaches for high quality, low latency, and low cost solutions. In this paper, we introduce Evorus, a crowd-powered conversational assistant built to automate itself over time by (i) allowing new chatbots to be easily integrated to automate more scenarios, (ii) reusing prior crowd answers, and (iii) learning to automatically approve response candidates. Our 5-month-long deployment with 80 participants and 281 conversations shows that Evorus can automate itself without compromising conversation quality. Crowd-AI architectures have long been proposed as a way to reduce cost and latency for crowd-powered systems; Evorus demonstrates how automation can be introduced successfully in a deployed system. Its architecture allows future researchers to make further innovation on the underlying automated components in the context of a deployed open domain dialog system.