Quantitative characterizations and estimations of uncertainty are of fundamental importance in optimization and decision-making processes. Herein, we propose intuitive scores, which we call certainty and doubt, that can be used in both a Bayesian and frequentist framework to assess and compare the quality and uncertainty of predictions in (multi-)classification decision machine learning problems.
We present a novel extension of the traditional neural network approach to classification tasks, referred to as variational classification (VC). By incorporating latent variable modeling, akin to the relationship between variational autoencoders and traditional autoencoders, we derive a training objective based on the evidence lower bound (ELBO), optimized using an adversarial approach. Our VC model allows for more flexibility in design choices, in particular class-conditional latent priors, in place of the implicit assumptions made in off-the-shelf softmax classifiers. Empirical evaluation on image and text classification datasets demonstrates the effectiveness of our approach in terms of maintaining prediction accuracy while improving other desirable properties such as calibration and adversarial robustness, even when applied to out-of-domain data.
The principle of maximum entropy, as introduced by Jaynes in information theory, has contributed to advancements in various domains such as Statistical Mechanics, Machine Learning, and Ecology. Its resultant solutions have served as a catalyst, facilitating researchers in mapping their empirical observations to the acquisition of unbiased models, whilst deepening the understanding of complex systems and phenomena. However, when we consider situations in which the model elements are not directly observable, such as when noise or ocular occlusion is present, possibilities arise for which standard maximum entropy approaches may fail, as they are unable to match feature constraints. Here we show the Principle of Uncertain Maximum Entropy as a method that both encodes all available information in spite of arbitrarily noisy observations while surpassing the accuracy of some ad-hoc methods. Additionally, we utilize the output of a black-box machine learning model as input into an uncertain maximum entropy model, resulting in a novel approach for scenarios where the observation function is unavailable. Previous remedies either relaxed feature constraints when accounting for observation error, given well-characterized errors such as zero-mean Gaussian, or chose to simply select the most likely model element given an observation. We anticipate our principle finding broad applications in diverse fields due to generalizing the traditional maximum entropy method with the ability to utilize uncertain observations.
Traditional neural networks are simple to train but they produce overconfident predictions, while Bayesian neural networks provide good uncertainty quantification but optimizing them is time consuming. This paper introduces a new approach, direct uncertainty quantification (DirectUQ), that combines their advantages where the neural network directly outputs the mean and variance of the last layer. DirectUQ can be derived as an alternative variational lower bound, and hence benefits from collapsed variational inference that provides improved regularizers. On the other hand, like non-probabilistic models, DirectUQ enjoys simple training and one can use Rademacher complexity to provide risk bounds for the model. Experiments show that DirectUQ and ensembles of DirectUQ provide a good tradeoff in terms of run time and uncertainty quantification, especially for out of distribution data.
This paper presents the latest improvements introduced in Version 4 of the UQpy, Uncertainty Quantification with Python, library. In the latest version, the code was restructured to conform with the latest Python coding conventions, refactored to simplify previous tightly coupled features, and improve its extensibility and modularity. To improve the robustness of UQpy, software engineering best practices were adopted. A new software development workflow significantly improved collaboration between team members, and continous integration and automated testing ensured the robustness and reliability of software performance. Continuous deployment of UQpy allowed its automated packaging and distribution in system agnostic format via multiple channels, while a Docker image enables the use of the toolbox regardless of operating system limitations.
Disorders of coronary arteries lead to severe health problems such as atherosclerosis, angina, heart attack and even death. Considering the clinical significance of coronary arteries, an efficient computational model is a vital step towards tissue engineering, enhancing the research of coronary diseases and developing medical treatment and interventional tools. In this work, we applied inverse uncertainty quantification to a microscale agent-based arterial tissue model, a component of a multiscale in-stent restenosis model. Inverse uncertainty quantification was performed to calibrate the arterial tissue model to achieve the mechanical response in line with tissue experimental data. Bayesian calibration with bias term correction was applied to reduce the uncertainty of unknown polynomial coefficients of the attractive force function and achieved agreement with the mechanical behaviour of arterial tissue based on the uniaxial strain tests. Due to the high computational costs of the model, a surrogate model based on Gaussian process was developed to ensure the feasibility of the computation.
Autonomous racing control is a challenging research problem as vehicles are pushed to their limits of handling to achieve an optimal lap time; therefore, vehicles exhibit highly nonlinear and complex dynamics. Difficult-to-model effects, such as drifting, aerodynamics, chassis weight transfer, and suspension can lead to infeasible and suboptimal trajectories. While offline planning allows optimizing a full reference trajectory for the minimum lap time objective, such modeling discrepancies are particularly detrimental when using offline planning, as planning model errors compound with controller modeling errors. Gaussian Process Regression (GPR) can compensate for modeling errors. However, previous works primarily focus on modeling error in real-time control without consideration for how the model used in offline planning can affect the overall performance. In this work, we propose a double-GPR error compensation algorithm to reduce model uncertainties; specifically, we compensate both the planner's model and controller's model with two respective GPR-based error compensation functions. Furthermore, we design an iterative framework to re-collect error-rich data using the racing control system. We test our method in the high-fidelity racing simulator Gran Turismo Sport (GTS); we find that our iterative, double-GPR compensation functions improve racing performance and iteration stability in comparison to a single compensation function applied merely for real-time control.
The use of deep learning approaches for image reconstruction is of contemporary interest in radiology, especially for approaches that solve inverse problems associated with imaging. In deployment, these models may be exposed to input distributions that are widely shifted from training data, due in part to data biases or drifts. We propose a metric based on local Lipschitz determined from a single trained model that can be used to estimate the model uncertainty for image reconstructions. We demonstrate a monotonic relationship between the local Lipschitz value and Mean Absolute Error and show that this method can be used to provide a threshold that determines whether a given DL reconstruction approach was well suited to the task. Our uncertainty estimation method can be used to identify out-of-distribution test samples, relate information regarding epistemic uncertainties, and guide proper data augmentation. Quantifying uncertainty of learned reconstruction approaches is especially pertinent to the medical domain where reconstructed images must remain diagnostically accurate.
Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.
An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.