In comparison to conventional traffic designs, shared spaces promote a more pleasant urban environment with slower motorized movement, smoother traffic, and less congestion. In the foreseeable future, shared spaces will be populated with a mixture of autonomous vehicles (AVs) and vulnerable road users (VRUs) like pedestrians and cyclists. However, a driver-less AV lacks a way to communicate with the VRUs when they have to reach an agreement of a negotiation, which brings new challenges to the safety and smoothness of the traffic. To find a feasible solution to integrating AVs seamlessly into shared-space traffic, we first identified the possible issues that the shared-space designs have not considered for the role of AVs. Then an online questionnaire was used to ask participants about how they would like a driver of the manually driving vehicle to communicate with VRUs in a shared space. We found that when the driver wanted to give some suggestions to the VRUs in a negotiation, participants thought that the communications via the driver's body behaviors were necessary. Besides, when the driver conveyed information about her/his intentions and cautions to the VRUs, participants selected different communication methods with respect to their transport modes (as a driver, pedestrian, or cyclist). These results suggest that novel eHMIs might be useful for AV-VRU communication when the original drivers are not present. Hence, a potential eHMI design concept was proposed for different VRUs to meet their various expectations. In the end, we further discussed the effects of the eHMIs on improving the sociality in shared spaces and the autonomous driving systems.
In view of the security issues of the Internet of Things (IoT), considered better combining edge computing and blockchain with the IoT, integrating attribute-based encryption (ABE) and attribute-based access control (ABAC) models with attributes as the entry point, an attribute-based encryption and access control scheme (ABE-ACS) has been proposed. Facing Edge-Iot, which is a heterogeneous network composed of most resource-limited IoT devices and some nodes with higher computing power. For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC) with improvement of the proof-of-work consensus. For the access control policies, the threshold tree and LSSS are used for conversion and assignment, stored in the blockchain to protect the privacy of the policy. For device and data, six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity. Thus, our scheme realizing Edge-Iot privacy protection, data and device controlled access. The security analysis shows that the proposed scheme is secure and the experimental results show that our LBC has higher throughput and lower resources consumption, the cost of encryption and decryption of our scheme is desirable.
Since the cyberspace consolidated as fifth warfare dimension, the different actors of the defense sector began an arms race toward achieving cyber superiority, on which research, academic and industrial stakeholders contribute from a dual vision, mostly linked to a large and heterogeneous heritage of developments and adoption of civilian cybersecurity capabilities. In this context, augmenting the conscious of the context and warfare environment, risks and impacts of cyber threats on kinetic actuations became a critical rule-changer that military decision-makers are considering. A major challenge on acquiring mission-centric Cyber Situational Awareness (CSA) is the dynamic inference and assessment of the vertical propagations from situations that occurred at the mission supportive Information and Communications Technologies (ICT), up to their relevance at military tactical, operational and strategical views. In order to contribute on acquiring CSA, this paper addresses a major gap in the cyber defence state-of-the-art: the dynamic identification of Key Cyber Terrains (KCT) on a mission-centric context. Accordingly, the proposed KCT identification approach explores the dependency degrees among tasks and assets defined by commanders as part of the assessment criteria. These are correlated with the discoveries on the operational network and the asset vulnerabilities identified thorough the supported mission development. The proposal is presented as a reference model that reveals key aspects for mission-centric KCT analysis and supports its enforcement and further enforcement by including an illustrative application case.
Nowadays mobile communication is growing fast in the 5G communication industry. With the increasing capacity requirements and requirements for quality of experience, mobility prediction has been widely applied to mobile communication and has becoming one of the key enablers that utilizes historical traffic information to predict future locations of traffic users, Since accurate mobility prediction can help enable efficient radio resource management, assist route planning, guide vehicle dispatching, or mitigate traffic congestion. However, mobility prediction is a challenging problem due to the complicated traffic network. In the past few years, plenty of researches have been done in this area, including Non-Machine-Learning (Non-ML)- based and Machine-Learning (ML)-based mobility prediction. In this paper, firstly we introduce the state of the art technologies for mobility prediction. Then, we selected Support Vector Machine (SVM) algorithm, the ML algorithm for practical traffic date training. Lastly, we analyse the simulation results for mobility prediction and introduce a future work plan where mobility prediction will be applied for improving mobile communication.
The communication system is a critical part of the system design for the autonomous UAV. It has to address different considerations, including efficiency, reliability and mobility of the UAV. In addition, a multi-UAV system requires a communication system to assist information sharing, task allocation and collaboration in a team of UAVs. In this paper, we review communication solutions for supporting a team of UAVs while considering an application in the power line inspection industry. We provide a review of candidate wireless communication technologies {for supporting communication in UAV applications. Performance measurements and UAV-related channel modeling of those candidate technologies are reviewed. A discussion of current technologies for building UAV mesh networks is presented. We then analyze the structure, interface and performance of robotic communication middleware, ROS and ROS2. Based on our review, the features and dependencies of candidate solutions in each layer of the communication system are presented.
Teleoperation provides a way for human operators to guide robots in situations where full autonomy is challenging or where direct human intervention is required. It can also be an important tool to teach robots in order to achieve autonomous behaviour later on. The increased availability of collaborative robot arms and Virtual Reality (VR) devices provides ample opportunity for development of novel teleoperation methods. Since robot arms are often kinematically different from human arms, mapping human motions to a robot in real-time is not trivial. Additionally, a human operator might steer the robot arm toward singularities or its workspace limits, which can lead to undesirable behaviour. This is further accentuated for the orchestration of multiple robots. In this paper, we present a VR interface targeted to multi-arm payload manipulation, which can closely match real-time input motion. Allowing the user to manipulate the payload rather than mapping their motions to individual arms we are able to simultaneously guide multiple collaborative arms. By releasing a single rotational degree of freedom, and by using a local optimization method, we can improve each arm's manipulability index, which in turn lets us avoid kinematic singularities and workspace limitations. We apply our approach to predefined trajectories as well as real-time teleoperation on different robot arms and compare performance in terms of end effector position error and relevant joint motion metrics.
This paper presents a novel strategy for autonomous teamed exploration of subterranean environments using legged and aerial robots. Tailored to the fact that subterranean settings, such as cave networks and underground mines, often involve complex, large-scale and multi-branched topologies, while wireless communication within them can be particularly challenging, this work is structured around the synergy of an onboard exploration path planner that allows for resilient long-term autonomy, and a multi-robot coordination framework. The onboard path planner is unified across legged and flying robots and enables navigation in environments with steep slopes, and diverse geometries. When a communication link is available, each robot of the team shares submaps to a centralized location where a multi-robot coordination framework identifies global frontiers of the exploration space to inform each system about where it should re-position to best continue its mission. The strategy is verified through a field deployment inside an underground mine in Switzerland using a legged and a flying robot collectively exploring for 45 min, as well as a longer simulation study with three systems.
The explanation dimension of Artificial Intelligence (AI) based system has been a hot topic for the past years. Different communities have raised concerns about the increasing presence of AI in people's everyday tasks and how it can affect people's lives. There is a lot of research addressing the interpretability and transparency concepts of explainable AI (XAI), which are usually related to algorithms and Machine Learning (ML) models. But in decision-making scenarios, people need more awareness of how AI works and its outcomes to build a relationship with that system. Decision-makers usually need to justify their decision to others in different domains. If that decision is somehow based on or influenced by an AI-system outcome, the explanation about how the AI reached that result is key to building trust between AI and humans in decision-making scenarios. In this position paper, we discuss the role of XAI in decision-making scenarios, our vision of Decision-Making with AI-system in the loop, and explore one case from the literature about how XAI can impact people justifying their decisions, considering the importance of building the human-AI relationship for those scenarios.
Since DARPA Grand Challenges (rural) in 2004/05 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. Almost at the same time, deep learning has made breakthrough by several pioneers, three of them (also called fathers of deep learning), Hinton, Bengio and LeCun, won ACM Turin Award in 2019. This is a survey of autonomous driving technologies with deep learning methods. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Due to the limited space, we focus the analysis on several key areas, i.e. 2D and 3D object detection in perception, depth estimation from cameras, multiple sensor fusion on the data, feature and task level respectively, behavior modelling and prediction of vehicle driving and pedestrian trajectories.
Conversation interfaces (CIs), or chatbots, are a popular form of intelligent agents that engage humans in task-oriented or informal conversation. In this position paper and demonstration, we argue that chatbots working in dynamic environments, like with sensor data, can not only serve as a promising platform to research issues at the intersection of learning, reasoning, representation and execution for goal-directed autonomy; but also handle non-trivial business applications. We explore the underlying issues in the context of Water Advisor, a preliminary multi-modal conversation system that can access and explain water quality data.
Effective task management is essential to successful team collaboration. While the past decade has seen considerable innovation in systems that track and manage group tasks, these innovations have typically been outside of the principal communication channels: email, instant messenger, and group chat. Teams formulate, discuss, refine, assign, and track the progress of their collaborative tasks over electronic communication channels, yet they must leave these channels to update their task-tracking tools, creating a source of friction and inefficiency. To address this problem, we explore how bots might be used to mediate task management for individuals and teams. We deploy a prototype bot to eight different teams of information workers to help them create, assign, and keep track of tasks, all within their main communication channel. We derived seven insights for the design of future bots for coordinating work.