Optimization is offered as an objective approach to resolving complex, real-world decisions involving uncertainty and conflicting interests. It drives business strategies as well as public policies and, increasingly, lies at the heart of sophisticated machine learning systems. A paradigm used to approach potentially high-stakes decisions, optimization relies on abstracting the real world to a set of decision(s), objective(s) and constraint(s). Drawing from the modeling process and a range of actual cases, this paper describes the normative choices and assumptions that are necessarily part of using optimization. It then identifies six emergent problems that may be neglected: 1) Misspecified values can yield optimizations that omit certain imperatives altogether or incorporate them incorrectly as a constraint or as part of the objective, 2) Problematic decision boundaries can lead to faulty modularity assumptions and feedback loops, 3) Failing to account for multiple agents' divergent goals and decisions can lead to policies that serve only certain narrow interests, 4) Mislabeling and mismeasurement can introduce bias and imprecision, 5) Faulty use of relaxation and approximation methods, unaccompanied by formal characterizations and guarantees, can severely impede applicability, and 6) Treating optimization as a justification for action, without specifying the necessary contextual information, can lead to ethically dubious or faulty decisions. Suggestions are given to further understand and curb the harms that can arise when optimization is used wrongfully.
This work is dedicated to the study of how uncertainty estimation of the human motion prediction can be embedded into constrained optimization techniques, such as Model Predictive Control (MPC) for the social robot navigation. We propose several cost objectives and constraint functions obtained from the uncertainty of predicting pedestrian positions and related to the probability of the collision that can be applied to the MPC, and all the different variants are compared in challenging scenes with multiple agents. The main question this paper tries to answer is: what are the most important uncertainty-based criteria for social MPC? For that, we evaluate the proposed approaches with several social navigation metrics in an extensive set of scenarios of different complexity in reproducible synthetic environments. The main outcome of our study is a foundation for a practical guide on when and how to use uncertainty-aware approaches for social robot navigation in practice and what are the most effective criteria.
Aiming at providing wireless communication systems with environment-perceptive capacity, emerging integrated sensing and communication (ISAC) technologies face multiple difficulties, especially in balancing the performance trade-off between the communication and radar functions. In this paper, we introduce a reconfigurable intelligent surface (RIS) to assist both data transmission and target detection in a dual-functional ISAC system. To formulate a general optimization framework, diverse communication performance metrics have been taken into account including famous capacity maximization and mean-squared error (MSE) minimization. Whereas the target detection process is modeled as a general likelihood ratio test (GLRT) due to the practical limitations, and the monotonicity of the corresponding detection probability is proved. For the single-user and single-target (SUST) scenario, the minimum transmit power of the ISAC transceiver has been revealed. By exploiting the optimal conditions of the BS design, we validate that the BS is able to realize the maximum power allocation scheme and derive the optimal BS precoder in a semi-closed form. Moreover, an alternating direction method of multipliers (ADMM) based RIS design is proposed to address the optimization of unit-modulus RIS phase shifts. For the sake of further enhancing computational efficiency, we also develop a low-complexity RIS design based on Riemannian gradient descent. Furthermore, the ISAC transceiver design for the multiple-users and multiple-targets (MUMT) scenario is also investigated, where a zero-forcing (ZF) radar receiver is adopted to cancel the interferences. Then optimal BS precoder is derived under the maximum power allocation scheme, and the RIS phase shifts can be optimized by extending the proposed ADMM-based RIS design. Numerical simulation results verify the performance of our proposed transceiver designs.
The nuclear fuel loading pattern optimization problem belongs to the class of large-scale combinatorial optimization. It is also characterized by multiple objectives and constraints, which makes it impossible to solve explicitly. Stochastic optimization methodologies including Genetic Algorithms and Simulated Annealing are used by different nuclear utilities and vendors, but hand-designed solutions continue to be the prevalent method in the industry. To improve the state-of-the-art, Deep Reinforcement Learning (RL), in particular, Proximal Policy Optimization is leveraged. This work presents a first-of-a-kind approach to utilize deep RL to solve the loading pattern problem and could be leveraged for any engineering design optimization. This paper is also to our knowledge the first to propose a study of the behavior of several hyper-parameters that influence the RL algorithm. The algorithm is highly dependent on multiple factors such as the shape of the objective function derived for the core design that behaves as a fudge factor that affects the stability of the learning. But also, an exploration/exploitation trade-off that manifests through different parameters such as the number of loading patterns seen by the agents per episode, the number of samples collected before a policy update nsteps, and an entropy factor ent_coef that increases the randomness of the policy during training. We found that RL must be applied similarly to a Gaussian Process in which the acquisition function is replaced by a parametrized policy. Then, once an initial set of hyper-parameters is found, reducing nsteps and ent_coef until no more learning is observed will result in the highest sample efficiency robustly and stably. This resulted in an economic benefit of 535,000- 642,000 $/year/plant.
In this paper we study the relation of two fundamental problems in scheduling and fair allocation: makespan minimization on unrelated parallel machines and max-min fair allocation, also known as the Santa Claus problem. For both of these problems the best approximation factor is a notorious open question; more precisely, whether there is a better-than-2 approximation for the former problem and whether there is a constant approximation for the latter. While the two problems are intuitively related and history has shown that techniques can often be transferred between them, no formal reductions are known. We first show that an affirmative answer to the open question for makespan minimization implies the same for the Santa Claus problem by reducing the latter problem to the former. We also prove that for problem instances with only two input values both questions are equivalent. We then move to a special case called ``restricted assignment'', which is well studied in both problems. Although our reductions do not maintain the characteristics of this special case, we give a reduction in a slight generalization, where the jobs or resources are assigned to multiple machines or players subject to a matroid constraint and in addition we have only two values. This draws a similar picture as before: equivalence for two values and the general case of Santa Claus can only be easier than makespan minimization. To complete the picture, we give an algorithm for our new matroid variant of the Santa Claus problem using a non-trivial extension of the local search method from restricted assignment. Thereby we unify, generalize, and improve several previous results. We believe that this matroid generalization may be of independent interest and provide several sample applications.
Organizations are collecting increasingly large amounts of data for data driven decision making. These data are often dumped into a centralized repository, e.g., a data lake, consisting of thousands of structured and unstructured datasets. Perversely, such mixture of datasets makes the problem of discovering elements (e.g., tables or documents) that are relevant to a user's query or an analytical task very challenging. Despite the recent efforts in data discovery, the problem remains widely open especially in the two fronts of (1) discovering relationships and relatedness across structured and unstructured datasets where existing techniques suffer from either scalability, being customized for a specific problem type (e.g., entity matching or data integration), or demolishing the structural properties on its way, and (2) developing a holistic system for integrating various similarity measurements and sketches in an effective way to boost the discovery accuracy. In this paper, we propose a new data discovery system, named CMDL, for addressing these two limitations. CMDL supports the data discovery process over both structured and unstructured data while retaining the structural properties of tables.
There is currently no established method for evaluating human response timing across a range of naturalistic traffic conflict types. Traditional notions derived from controlled experiments, such as perception-response time, fail to account for the situation-dependency of human responses and offer no clear way to define the stimulus in many common traffic conflict scenarios. As a result, they are not well suited for application in naturalistic settings. Our main contribution is the development of a novel framework for measuring and modeling response times in naturalistic traffic conflicts applicable to automated driving systems as well as other traffic safety domains. The framework suggests that response timing must be understood relative to the subject's current (prior) belief and is always embedded in, and dependent on, the dynamically evolving situation. The response process is modeled as a belief update process driven by perceived violations to this prior belief, that is, by surprising stimuli. The framework resolves two key limitations with traditional notions of response time when applied in naturalistic scenarios: (1) The strong situation-dependence of response timing and (2) how to unambiguously define the stimulus. Resolving these issues is a challenge that must be addressed by any response timing model intended to be applied in naturalistic traffic conflicts. We show how the framework can be implemented by means of a relatively simple heuristic model fit to naturalistic human response data from real crashes and near crashes from the SHRP2 dataset and discuss how it is, in principle, generalizable to any traffic conflict scenario. We also discuss how the response timing framework can be implemented computationally based on evidence accumulation enhanced by machine learning-based generative models and the information-theoretic concept of surprise.
Sharing ideas through communication with peers is the primary mode of human interaction. Consequently, extensive research has been conducted in the area of conversational AI, leading to an increase in the availability and diversity of conversational tasks, datasets, and methods. However, with numerous tasks being explored simultaneously, the current landscape of conversational AI becomes fragmented. Therefore, initiating a well-thought-out model for a dialogue agent can pose significant challenges for a practitioner. Towards highlighting the critical ingredients needed for a practitioner to design a dialogue agent from scratch, the current study provides a comprehensive overview of the primary characteristics of a dialogue agent, the supporting tasks, their corresponding open-domain datasets, and the methods used to benchmark these datasets. We observe that different methods have been used to tackle distinct dialogue tasks. However, building separate models for each task is costly and does not leverage the correlation among the several tasks of a dialogue agent. As a result, recent trends suggest a shift towards building unified foundation models. To this end, we propose UNIT, a UNified dIalogue dataseT constructed from conversations of existing datasets for different dialogue tasks capturing the nuances for each of them. We also examine the evaluation strategies used to measure the performance of dialogue agents and highlight the scope for future research in the area of conversational AI.
Next-generation wireless networks strive for higher communication rates, ultra-low latency, seamless connectivity, and high-resolution sensing capabilities. To meet these demands, terahertz (THz)-band signal processing is envisioned as a key technology offering wide bandwidth and sub-millimeter wavelength. Furthermore, THz integrated sensing and communications (ISAC) paradigm has emerged jointly access spectrum and reduced hardware costs through a unified platform. To address the challenges in THz propagation, THz-ISAC systems employ extremely large antenna arrays to improve the beamforming gain for communications with high data rates and sensing with high resolution. However, the cost and power consumption of implementing fully digital beamformers are prohibitive. While hybrid analog/digital beamforming can be a potential solution, the use of subcarrier-independent analog beamformers leads to the beam-squint phenomenon where different subcarriers observe distinct directions because of adopting the same analog beamformer across all subcarriers. In this paper, we develop a sparse array architecture for THz-ISAC with hybrid beamforming to provide a cost-effective solution. We analyze the antenna selection problem under beam-squint influence and introduce a manifold optimization approach for hybrid beamforming design. To reduce computational and memory costs, we propose novel algorithms leveraging grouped subarrays, quantized performance metrics, and sequential optimization. These approaches yield a significant reduction in the number of possible subarray configurations, which enables us to devise a neural network with classification model to accurately perform antenna selection.
This paper proposes a scenario-based functional testing approach for enhancing the performance of machine learning (ML) applications. The proposed method is an iterative process that starts with testing the ML model on various scenarios to identify areas of weakness. It follows by a further testing on the suspected weak scenarios and statistically evaluate the model's performance on the scenarios to confirm the diagnosis. Once the diagnosis of weak scenarios is confirmed by test results, the treatment of the model is performed by retraining the model using a transfer learning technique with the original model as the base and applying a set of training data specifically targeting the treated scenarios plus a subset of training data selected at random from the original train dataset to prevent the so-call catastrophic forgetting effect. Finally, after the treatment, the model is assessed and evaluated again by testing on the treated scenarios as well as other scenarios to check if the treatment is effective and no side effect caused. The paper reports a case study with a real ML deep neural network (DNN) model, which is the perception system of an autonomous racing car. It is demonstrated that the method is effective in the sense that DNN model's performance can be improved. It provides an efficient method of enhancing ML model's performance with much less human and compute resource than retrain from scratch.
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.