亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study mechanisms of synchronisation, coordination, and equilibrium selection in two-player coordination games on multilayer networks. We apply the approach from evolutionary game theory with three possible update rules: the replicator dynamics (RD), the best response (BR), and the unconditional imitation (UI). Players interact on a two-layer random regular network. The population on each layer plays a different game, with layer I preferring the opposite strategy to layer II. We measure the difference between the two games played on the layers by a difference in payoffs $\Delta S$ while the inter-connectedness is measured by a node overlap parameter $q$. We discover a critical value $q_c(\Delta S)$ below which layers do not synchronise. For $q>q_c$ in general both layers coordinate on the same strategy. Surprisingly, there is a symmetry breaking in the selection of equilibrium -- for RD and UI there is a phase where only the payoff-dominant equilibrium is selected. Our work is an example of previously observed differences between the update rules on a single network. However, we took a novel approach with the game being played on two inter-connected layers. As we show, the multilayer structure enhances the abundance of the Pareto-optimal equilibrium in coordination games with imitative update rules.

相關內容

We introduce new techniques for the parameterized verification of disjunctive timed networks (DTNs), i.e., networks of timed automata (TAs) that communicate via location guards that enable a transition only if at least one process is in a given location. This computational model has been considered in the literature before, and example applications are gossiping clock synchronization protocols or planning problems. We address the minimum-time reachability problem (minreach) in DTNs, and show how to efficiently solve it based on a novel zone-graph algorithm. We further show that solving minreach allows us to construct a summary TA capturing exactly the possible behaviors of a single TA within a DTN of arbitrary size. The combination of these two results enables the parameterized verification of DTNs, while avoiding the construction of an exponential-size cutoff-system required by existing results. Our techniques are also implemented, and experiments show their practicality.

As IoT devices are becoming widely deployed, there exist many threats to IoT-based systems due to their inherent vulnerabilities. One effective approach to improving IoT security is to deploy IoT honeypot systems, which can collect attack information and reveal the methods and strategies used by attackers. However, building high-interaction IoT honeypots is challenging due to the heterogeneity of IoT devices. Vulnerabilities in IoT devices typically depend on specific device types or firmware versions, which encourages attackers to perform pre-attack checks to gather device information before launching attacks. Moreover, conventional honeypots are easily detected because their replying logic differs from that of the IoT devices they try to mimic. To address these problems, we develop an adaptive high-interaction honeypot for IoT devices, called HoneyIoT. We first build a real device based attack trace collection system to learn how attackers interact with IoT devices. We then model the attack behavior through markov decision process and leverage reinforcement learning techniques to learn the best responses to engage attackers based on the attack trace. We also use differential analysis techniques to mutate response values in some fields to generate high-fidelity responses. HoneyIoT has been deployed on the public Internet. Experimental results show that HoneyIoT can effectively bypass the pre-attack checks and mislead the attackers into uploading malware. Furthermore, HoneyIoT is covert against widely used reconnaissance and honeypot detection tools.

Cooperative multi-agent reinforcement learning (CMARL) has shown to be promising for many real-world applications. Previous works mainly focus on improving coordination ability via solving MARL-specific challenges (e.g., non-stationarity, credit assignment, scalability), but ignore the policy perturbation issue when testing in a different environment. This issue hasn't been considered in problem formulation or efficient algorithm design. To address this issue, we firstly model the problem as a limited policy adversary Dec-POMDP (LPA-Dec-POMDP), where some coordinators from a team might accidentally and unpredictably encounter a limited number of malicious action attacks, but the regular coordinators still strive for the intended goal. Then, we propose Robust Multi-Agent Coordination via Evolutionary Generation of Auxiliary Adversarial Attackers (ROMANCE), which enables the trained policy to encounter diversified and strong auxiliary adversarial attacks during training, thus achieving high robustness under various policy perturbations. Concretely, to avoid the ego-system overfitting to a specific attacker, we maintain a set of attackers, which is optimized to guarantee the attackers high attacking quality and behavior diversity. The goal of quality is to minimize the ego-system coordination effect, and a novel diversity regularizer based on sparse action is applied to diversify the behaviors among attackers. The ego-system is then paired with a population of attackers selected from the maintained attacker set, and alternately trained against the constantly evolving attackers. Extensive experiments on multiple scenarios from SMAC indicate our ROMANCE provides comparable or better robustness and generalization ability than other baselines.

In this paper, $2\times2$ zero-sum games are studied under the following assumptions: $(1)$ One of the players (the leader) commits to choose its actions by sampling a given probability measure (strategy); $(2)$ The leader announces its action, which is observed by its opponent (the follower) through a binary channel; and $(3)$ the follower chooses its strategy based on the knowledge of the leader's strategy and the noisy observation of the leader's action. Under these conditions, the equilibrium is shown to always exist. Interestingly, even subject to noise, observing the actions of the leader is shown to be either beneficial or immaterial for the follower. More specifically, the payoff at the equilibrium of this game is upper bounded by the payoff at the Stackelberg equilibrium (SE) in pure strategies; and lower bounded by the payoff at the Nash equilibrium, which is equivalent to the SE in mixed strategies.Finally, necessary and sufficient conditions for observing the payoff at equilibrium to be equal to its lower bound are presented. Sufficient conditions for the payoff at equilibrium to be equal to its upper bound are also presented.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound has a main complexity component, a variant of Talagrand's $\gamma$ functional for the deflated function class, as well as an instance-dependent deviation term, measured by an appropriately scaled version of a suitable norm. Both of these terms are expressed using certain coefficients formulated based on the relevant cumulant generating functions. We also provide more explicit approximations for the mentioned coefficients, when the function class lies in a given (exponential type) Orlicz space.

Designs for screening experiments usually include factors with two levels only. Adding a few four-level factors allows for the inclusion of multi-level categorical factors or quantitative factors with possible quadratic or third-order effects. Three examples motivated us to generate a large catalog of designs with two-level factors as well as four-level factors. To create the catalog, we considered three methods. In the first method, we select designs using a search table, and in the second method, we use a procedure that selects candidate designs based on the properties of their projections into fewer factors. The third method is actually a benchmark method, in which we use a general orthogonal array enumeration algorithm. We compare the efficiencies of the new methods for generating complete sets of non-isomorphic designs. Finally, we use the most efficient method to generate a catalog of designs with up to three four-level factors and up to 20 two-level factors for run sizes 16, 32, 64, and 128. In some cases, a complete enumeration was infeasible. For these cases, we used a bounded enumeration strategy instead. We demonstrate the usefulness of the catalog by revisiting the motivating examples.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司