Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.
Large language models (LLMs) have demonstrated notable potential in conducting complex tasks and are increasingly utilized in various financial applications. However, high-quality sequential financial investment decision-making remains challenging. These tasks require multiple interactions with a volatile environment for every decision, demanding sufficient intelligence to maximize returns and manage risks. Although LLMs have been used to develop agent systems that surpass human teams and yield impressive investment returns, opportunities to enhance multi-sourced information synthesis and optimize decision-making outcomes through timely experience refinement remain unexplored. Here, we introduce the FinCon, an LLM-based multi-agent framework with CONceptual verbal reinforcement tailored for diverse FINancial tasks. Inspired by effective real-world investment firm organizational structures, FinCon utilizes a manager-analyst communication hierarchy. This structure allows for synchronized cross-functional agent collaboration towards unified goals through natural language interactions and equips each agent with greater memory capacity than humans. Additionally, a risk-control component in FinCon enhances decision quality by episodically initiating a self-critiquing mechanism to update systematic investment beliefs. The conceptualized beliefs serve as verbal reinforcement for the future agent's behavior and can be selectively propagated to the appropriate node that requires knowledge updates. This feature significantly improves performance while reducing unnecessary peer-to-peer communication costs. Moreover, FinCon demonstrates strong generalization capabilities in various financial tasks, including single stock trading and portfolio management.
The development of Large Language Models (LLMs) in various languages has been advancing, but the combination of non-English languages with domain-specific contexts remains underexplored. This paper presents our findings from training and evaluating a Japanese business domain-specific LLM designed to better understand business-related documents, such as the news on current affairs, technical reports, and patents. Additionally, LLMs in this domain require regular updates to incorporate the most recent knowledge. Therefore, we also report our findings from the first experiments and evaluations involving updates to this LLM using the latest article data, which is an important problem setting that has not been addressed in previous research. From our experiments on a newly created benchmark dataset for question answering in the target domain, we found that (1) our pretrained model improves QA accuracy without losing general knowledge, and (2) a proper mixture of the latest and older texts in the training data for the update is necessary. Our pretrained model and business domain benchmark are publicly available to support further studies.
Watermarking generative content serves as a vital tool for authentication, ownership protection, and mitigation of potential misuse. Existing watermarking methods face the challenge of balancing robustness and concealment. They empirically inject a watermark that is both invisible and robust and passively achieve concealment by limiting the strength of the watermark, thus reducing the robustness. In this paper, we propose to explicitly introduce a watermark hiding process to actively achieve concealment, thus allowing the embedding of stronger watermarks. To be specific, we implant a robust watermark in an intermediate diffusion state and then guide the model to hide the watermark in the final generated image. We employ an adversarial optimization algorithm to produce the optimal hiding prompt guiding signal for each watermark. The prompt embedding is optimized to minimize artifacts in the generated image, while the watermark is optimized to achieve maximum strength. The watermark can be verified by reversing the generation process. Experiments on various diffusion models demonstrate the watermark remains verifiable even under significant image tampering and shows superior invisibility compared to other state-of-the-art robust watermarking methods.
Interacting with human agents in complex scenarios presents a significant challenge for robotic navigation, particularly in environments that necessitate both collision avoidance and collaborative interaction, such as indoor spaces. Unlike static or predictably moving obstacles, human behavior is inherently complex and unpredictable, stemming from dynamic interactions with other agents. Existing simulation tools frequently fail to adequately model such reactive and collaborative behaviors, impeding the development and evaluation of robust social navigation strategies. This paper introduces a novel framework utilizing distributed potential games to simulate human-like interactions in highly interactive scenarios. Within this framework, each agent imagines a virtual cooperative game with others based on its estimation. We demonstrate this formulation can facilitate the generation of diverse and realistic interaction patterns in a configurable manner across various scenarios. Additionally, we have developed a gym-like environment leveraging our interactive agent model to facilitate the learning and evaluation of interactive navigation algorithms.
State-of-the-art large language models (LLMs) are typically deployed as online services, requiring users to transmit detailed prompts to cloud servers. This raises significant privacy concerns. In response, we introduce ConfusionPrompt, a novel framework for private LLM inference that protects user privacy by: (i) decomposing the original prompt into smaller sub-prompts, and (ii) generating pseudo-prompts alongside the genuine sub-prompts, which are then sent to the LLM. The server responses are later recomposed by the user to reconstruct the final output. This approach offers key advantages over previous LLM privacy protection methods: (i) it integrates seamlessly with existing black-box LLMs, and (ii) it delivers a significantly improved privacy-utility trade-off compared to existing text perturbation methods. We also develop a $(\lambda, \mu, \rho)$-privacy model to formulate the requirements for a privacy-preserving group of prompts and provide a complexity analysis to justify the role of prompt decomposition. Our empirical evaluation shows that ConfusionPrompt achieves significantly higher utility than local inference methods using open-source models and perturbation-based techniques, while also reducing memory consumption compared to open-source LLMs.
We propose a new variant of the Adam optimizer called MicroAdam that specifically minimizes memory overheads, while maintaining theoretical convergence guarantees. We achieve this by compressing the gradient information before it is fed into the optimizer state, thereby reducing its memory footprint significantly. We control the resulting compression error via a novel instance of the classical \emph{error feedback} mechanism from distributed optimization in which *the error correction information is itself compressed* to allow for practical memory gains. We prove that the resulting approach maintains theoretical convergence guarantees competitive to those of AMSGrad, while providing good practical performance. Specifically, we show that MicroAdam can be implemented efficiently on GPUs: on both million-scale (BERT) and billion-scale (LLaMA) models, MicroAdam provides practical convergence competitive to that of the uncompressed Adam baseline, with lower memory usage and similar running time. Our code is available at //github.com/IST-DASLab/MicroAdam.
Recent advancements in automatic code generation using large language models (LLMs) have brought us closer to fully automated secure software development. However, existing approaches often rely on a single agent for code generation, which struggles to produce secure, vulnerability-free code. Traditional program synthesis with LLMs has primarily focused on functional correctness, often neglecting critical dynamic security implications that happen during runtime. To address these challenges, we propose AutoSafeCoder, a multi-agent framework that leverages LLM-driven agents for code generation, vulnerability analysis, and security enhancement through continuous collaboration. The framework consists of three agents: a Coding Agent responsible for code generation, a Static Analyzer Agent identifying vulnerabilities, and a Fuzzing Agent performing dynamic testing using a mutation-based fuzzing approach to detect runtime errors. Our contribution focuses on ensuring the safety of multi-agent code generation by integrating dynamic and static testing in an iterative process during code generation by LLM that improves security. Experiments using the SecurityEval dataset demonstrate a 13% reduction in code vulnerabilities compared to baseline LLMs, with no compromise in functionality.
By sharing complementary perceptual information, multi-agent collaborative perception fosters a deeper understanding of the environment. Recent studies on collaborative perception mostly utilize CNNs or Transformers to learn feature representation and fusion in the spatial dimension, which struggle to handle long-range spatial-temporal features under limited computing and communication resources. Holistically modeling the dependencies over extensive spatial areas and extended temporal frames is crucial to enhancing feature quality. To this end, we propose a resource efficient cross-agent spatial-temporal collaborative state space model (SSM), named CollaMamba. Initially, we construct a foundational backbone network based on spatial SSM. This backbone adeptly captures positional causal dependencies from both single-agent and cross-agent views, yielding compact and comprehensive intermediate features while maintaining linear complexity. Furthermore, we devise a history-aware feature boosting module based on temporal SSM, extracting contextual cues from extended historical frames to refine vague features while preserving low overhead. Extensive experiments across several datasets demonstrate that CollaMamba outperforms state-of-the-art methods, achieving higher model accuracy while reducing computational and communication overhead by up to 71.9% and 1/64, respectively. This work pioneers the exploration of the Mamba's potential in collaborative perception. The source code will be made available.
Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at //github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.