亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this correspondence, we propose to use an intelligent reflective surface (IRS) installed on unmanned aerial vehicle (UAV), referred to as aerial IRS (AIRS), for vehicular networks, where simultaneous wireless information and power transfer (SWIPT) receivers to concurrently allow information decoding (ID) and energy harvesting (EH) are equipped at the battery-limited vehicles. For efficiently supporting the multiple moving vehicles, we adopt rate-splitting multiple access (RSMA) technique. With the aim of maximizing the sum rate of vehicles, we jointly optimize trajectory and phase shift design of AIRS, transmit power and rate allocation for RSMA along with power splitting ratio for SWIPT implementation. Via simulations, the superior performances of the proposed algorithm are validated compared to the conventional partial optimizations.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 大語言模型 · GPT-4 · 模型評估 · 語言模型化 ·
2024 年 3 月 5 日

Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. In this study, we conduct an empirical study of different judge models on their evaluation capability. Our findings indicate that although the fine-tuned judge models achieve high accuracy on in-domain test sets, even surpassing GPT4, they are inherently task-specific classifiers, and their generalizability and fairness severely underperform GPT4.

Over the past few years, there has been remarkable progress in research on 3D point clouds and their use in autonomous driving scenarios has become widespread. However, deep learning methods heavily rely on annotated data and often face domain generalization issues. Unlike 2D images whose domains usually pertain to the texture information present in them, the features derived from a 3D point cloud are affected by the distribution of the points. The lack of a 3D domain adaptation benchmark leads to the common practice of training a model on one benchmark (e.g. Waymo) and then assessing it on another dataset (e.g. KITTI). This setting results in two distinct domain gaps: scenarios and sensors, making it difficult to analyze and evaluate the method accurately. To tackle this problem, this paper presents LiDAR Dataset with Cross Sensors (LiDAR-CS Dataset), which contains large-scale annotated LiDAR point cloud under six groups of different sensors but with the same corresponding scenarios, captured from hybrid realistic LiDAR simulator. To our knowledge, LiDAR-CS Dataset is the first dataset that addresses the sensor-related gaps in the domain of 3D object detection in real traffic. Furthermore, we evaluate and analyze the performance using various baseline detectors and demonstrated its potential applications. Project page: //opendriving.github.io/lidar-cs.

With the rising prominence of WiFi in common spaces, efforts have been made in the robotics community to take advantage of this fact by incorporating WiFi signal measurements in indoor SLAM (Simultaneous Localization and Mapping) systems. SLAM is essential in a wide range of applications, especially in the control of autonomous robots. This paper describes recent work in the development of WiFi-based localization and addresses the challenges currently faced in achieving WiFi-based geometric mapping. Inspired by the field of research into k-visibility, this paper presents the concept of inverse k-visibility and proposes a novel algorithm that allows robots to build a map of the free space of an unknown environment, essential for planning, navigation, and avoiding obstacles. Experiments performed in simulated and real-world environments demonstrate the effectiveness of the proposed algorithm.

In this letter, we present a novel bi-modal bi-copter robot called Skater, which is adaptable to air and various ground surfaces. Skater consists of a bi-copter moving along its longitudinal direction with two passive wheels on both sides. Using longitudinally arranged bi-copter as the unified actuation system for both aerial and ground modes, this robot not only keeps concise and lightweight mechanism, but also possesses exceptional terrain traversing capability and strong steering capacity. Moreover, leveraging the vectored thrust characteristic of bi-copters, Skater can actively generate the centripetal force needed for steering, enabling it to achieve stable movement even on slippery surfaces. Furthermore, we model the comprehensive dynamics of Skater, analyze its differential flatness and introduce a controller using nonlinear model predictive control for trajectory tracking. The outstanding performance of the system is verified by extensive real-world experiments and benchmark comparisons.

In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose \emph{SALAD-Bench}, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under //github.com/OpenSafetyLab/SALAD-BENCH.

In this paper, we propose a cost-effective strategy for heterogeneous UAV swarm systems for cooperative aerial inspection. Unlike previous swarm inspection works, the proposed method does not rely on precise prior knowledge of the environment and can complete full 3D surface coverage of objects in any shape. In this work, agents are partitioned into teams, with each drone assign a different task, including mapping, exploration, and inspection. Task allocation is facilitated by assigning optimal inspection volumes to each team, following best-first rules. A voxel map-based representation of the environment is used for pathfinding, and a rule-based path-planning method is the core of this approach. We achieved the best performance in all challenging experiments with the proposed approach, surpassing all benchmark methods for similar tasks across multiple evaluation trials. The proposed method is open source at //github.com/ntu-aris/caric_baseline and used as the baseline of the Cooperative Aerial Robots Inspection Challenge at the 62nd IEEE Conference on Decision and Control 2023.

Terrestrial and aerial bimodal vehicles have gained widespread attention due to their cross-domain maneuverability. Nevertheless, their bimodal dynamics significantly increase the complexity of motion planning and control, thus hindering robust and efficient autonomous navigation in unknown environments. To resolve this issue, we develop a model-based planning and control framework for terrestrial aerial bi-modal vehicles. This work begins by deriving a unified dynamic model and the corresponding differential flatness. Leveraging differential flatness, an optimization-based trajectory planner is proposed, which takes into account both solution quality and computational efficiency. Moreover, we design a tracking controller using nonlinear model predictive control based on the proposed unified dynamic model to achieve accurate trajectory tracking and smooth mode transition. We validate our framework through extensive benchmark comparisons and experiments, demonstrating its effectiveness in terms of planning quality and control performance.

In the context of pose-invariant object recognition and retrieval, we demonstrate that it is possible to achieve significant improvements in performance if both the category-based and the object-identity-based embeddings are learned simultaneously during training. In hindsight, that sounds intuitive because learning about the categories is more fundamental than learning about the individual objects that correspond to those categories. However, to the best of what we know, no prior work in pose-invariant learning has demonstrated this effect. This paper presents an attention-based dual-encoder architecture with specially designed loss functions that optimize the inter- and intra-class distances simultaneously in two different embedding spaces, one for the category embeddings and the other for the object-level embeddings. The loss functions we have proposed are pose-invariant ranking losses that are designed to minimize the intra-class distances and maximize the inter-class distances in the dual representation spaces. We demonstrate the power of our approach with three challenging multi-view datasets, ModelNet-40, ObjectPI, and FG3D. With our dual approach, for single-view object recognition, we outperform the previous best by 20.0% on ModelNet40, 2.0% on ObjectPI, and 46.5% on FG3D. On the other hand, for single-view object retrieval, we outperform the previous best by 33.7% on ModelNet40, 18.8% on ObjectPI, and 56.9% on FG3D.

Although Large Language Models (LLMs) have made significant progress in code generation, they still struggle with code generation tasks in specific scenarios. These scenarios usually necessitate the adaptation of LLMs to fulfill specific needs, but the limited training data available in practice leads to poor code generation performance. How to effectively adapt LLMs to new scenarios with fewer training samples is a major challenge for current code generation. In this paper, we propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation. SEED leverages the errors made by LLMs as learning opportunities, using error revision to overcome its own shortcomings, thus achieving efficient learning. Specifically, SEED involves identifying error code generated by LLMs, employing Self-revise for code revision, optimizing the model with revised code, and iteratively adapting the process for continuous improvement. Experimental results show that, compared to traditional fine-tuning approaches, SEED achieves superior performance with fewer training samples, showing a relative improvement of 27.2%-325.0% in Pass@1. We also validate the effectiveness of Self-revise, which generates revised code that optimizes the model more efficiently compared to the code samples from datasets. Moreover, SEED consistently demonstrates strong performance across various LLMs, underscoring its generalizability.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

北京阿比特科技有限公司