亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A linearized numerical scheme is proposed to solve the nonlinear time fractional parabolic problems with time delay. The scheme is based on the standard Galerkin finite element method in the spatial direction, the fractional Crank-Nicolson method and extrapolation methods in the temporal direction. A novel discrete fractional Gr\"{o}nwall inequality is established. Thanks to the inequality, the error estimate of fully discrete scheme is obtained. Several numerical examples are provided to verify the effectiveness of the fully discrete numerical method.

相關內容

We study the discretization of a linear evolution partial differential equation when its Green function is known. We provide error estimates both for the spatial approximation and for the time stepping approximation. We show that, in fact, an approximation of the Green function is almost as good as the Green function itself. For suitable time-dependent parabolic equations, we explain how to obtain good, explicit approximations of the Green function using the Dyson-Taylor commutator method (DTCM) that we developed in J. Math. Phys. (2010). This approximation for short time, when combined with a bootstrap argument, gives an approximate solution on any fixed time interval within any prescribed tolerance.

Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests.

Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.

This paper considers fair probabilistic binary classification where the outputs of primary interest are predicted probabilities, commonly referred to as scores. We formulate the problem of transforming scores to satisfy fairness constraints that are linear in conditional means of scores while minimizing a cross-entropy objective. The formulation can be applied directly to post-process classifier outputs and we also explore a pre-processing extension, thus allowing maximum freedom in selecting a classification algorithm. We derive a closed-form expression for the optimal transformed scores and a convex optimization problem for the transformation parameters. In the population limit, the transformed score function is the fairness-constrained minimizer of cross-entropy with respect to the true conditional probability of the outcome. In the finite sample setting, we propose a method called FairScoreTransformer to approach this solution using a combination of standard probabilistic classifiers and ADMM. We provide several consistency and finite-sample guarantees for FairScoreTransformer, relating to the transformation parameters and transformed score function that it obtains. Comprehensive experiments comparing to 10 existing methods show that FairScoreTransformer has advantages for score-based metrics such as Brier score and AUC while remaining competitive for binary label-based metrics such as accuracy.

Minimum residual methods such as the least-squares finite element method (FEM) or the discontinuous Petrov--Galerkin method with optimal test functions (DPG) usually exclude singular data, e.g., non square-integrable loads. We consider a DPG method and a least-squares FEM for the Poisson problem. For both methods we analyze regularization approaches that allow the use of $H^{-1}$ loads, and also study the case of point loads. For all cases we prove appropriate convergence orders. We present various numerical experiments that confirm our theoretical results. Our approach extends to general well-posed second-order problems.

We present a fast algorithm for the resolution of the Lasso for convolutional models in high dimension, with a particular focus on the problem of spike sorting in neuroscience. Making use of biological properties related to neurons, we explain how the particular structure of the problem allows several optimizations, leading to an algorithm with a temporal complexity which grows linearly with respect to the size of the recorded signal and can be performed online. Moreover the spatial separability of the initial problem allows to break it into subproblems, further reducing the complexity and making possible its application on the latest recording devices which comprise a large number of sensors. We provide several mathematical results: the size and numerical complexity of the subproblems can be estimated mathematically by using percolation theory. We also show under reasonable assumptions that the Lasso estimator retrieves the true support with large probability. Finally the theoretical time complexity of the algorithm is given. Numerical simulations are also provided in order to illustrate the efficiency of our approach.

This paper deals with a projection least square estimator of the function $J_0$ computed from multiple independent observations on $[0,T]$ of the process $Z$ defined by $dZ_t = J_0(t)d\langle M\rangle_t + dM_t$, where $M$ is a centered, continuous and square integrable martingale vanishing at $0$. Risk bounds are established on this estimator and on an associated adaptive estimator. An appropriate transformation allows to rewrite the differential equation $dX_t = V(X_t)(b_0(t)dt +\sigma(t)dB_t)$, where $B$ is a fractional Brownian motion of Hurst parameter $H\in (1/2,1)$, as a model of the previous type. So, the second part of the paper deals with risk bounds on a nonparametric estimator of $b_0$ derived from the results on the projection least square estimator of $J_0$. In particular, our results apply to the estimation of the drift function in a non-autonomous extension of the fractional Black-Scholes model introduced in Hu et al. (2003).

The primary emphasis of this work is the development of a finite element based space-time discretization for solving the stochastic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations of incompressible fluid turbulence with multiplicative random forcing, under nonperiodic boundary conditions within a bounded polygonal (or polyhedral) domain of R^d , d $\in$ {2, 3}. The convergence analysis of a fully discretized numerical scheme is investigated and split into two cases according to the spacial scale $\alpha$, namely we first assume $\alpha$ to be controlled by the step size of the space discretization so that it vanishes when passing to the limit, then we provide an alternative study when $\alpha$ is fixed. A preparatory analysis of uniform estimates in both $\alpha$ and discretization parameters is carried out. Starting out from the stochastic LANS-$\alpha$ model, we achieve convergence toward the continuous strong solutions of the stochastic Navier-Stokes equations in 2D when $\alpha$ vanishes at the limit. Additionally, convergence toward the continuous strong solutions of the stochastic LANS-$\alpha$ model is accomplished if $\alpha$ is fixed.

In this paper, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. {\it A~priori} error estimates of optimal order are derived for velocity and pressure in the energy norm and the $L^2$-norm, respectively. Moreover, a reliable and efficient {\it a~posteriori} error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix-Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.

We propose an adaptive finite element algorithm to approximate solutions of elliptic problems whose forcing data is locally defined and is approximated by regularization (or mollification). We show that the energy error decay is quasi-optimal in two dimensional space and sub-optimal in three dimensional space. Numerical simulations are provided to confirm our findings.

北京阿比特科技有限公司