Summation-by-parts (SBP) operators allow us to systematically develop energy-stable and high-order accurate numerical methods for time-dependent differential equations. Until recently, the main idea behind existing SBP operators was that polynomials can accurately approximate the solution, and SBP operators should thus be exact for them. However, polynomials do not provide the best approximation for some problems, with other approximation spaces being more appropriate. We recently addressed this issue and developed a theory for one-dimensional SBP operators based on general function spaces, coined function-space SBP (FSBP) operators. In this paper, we extend the theory of FSBP operators to multiple dimensions. We focus on their existence, connection to quadratures, construction, and mimetic properties. A more exhaustive numerical demonstration of multi-dimensional FSBP (MFSBP) operators and their application will be provided in future works. Similar to the one-dimensional case, we demonstrate that most of the established results for polynomial-based multi-dimensional SBP (MSBP) operators carry over to the more general class of MFSBP operators. Our findings imply that the concept of SBP operators can be applied to a significantly larger class of methods than is currently done. This can increase the accuracy of the numerical solutions and/or provide stability to the methods.
This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.
A method is proposed for evaluation of single and double layer potentials of the Laplace and Helmholtz equations on piecewise smooth manifold boundary elements with constant densities. The method is based on a novel two-term decomposition of the layer potentials, derived by means of differential geometry. The first term is an integral of a differential 2-form which can be reduced to contour integrals using Stokes' theorem, while the second term is related to the element curvature. This decomposition reduces the degree of singularity and the curvature term can be further regularized by a polar coordinate transform. The method can handle singular and nearly singular integrals. Numerical results validating the accuracy of the method are presented for all combinations of single and double layer potentials, for the Laplace and Helmholtz kernels, and for singular and nearly singular integrals.
Tens of thousands of simultaneous hypothesis tests are routinely performed in genomic studies to identify differentially expressed genes. However, due to unmeasured confounders, many standard statistical approaches may be substantially biased. This paper investigates the large-scale hypothesis testing problem for multivariate generalized linear models in the presence of confounding effects. Under arbitrary confounding mechanisms, we propose a unified statistical estimation and inference framework that harnesses orthogonal structures and integrates linear projections into three key stages. It first leverages multivariate responses to separate marginal and uncorrelated confounding effects, recovering the confounding coefficients' column space. Subsequently, latent factors and primary effects are jointly estimated, utilizing $\ell_1$-regularization for sparsity while imposing orthogonality onto confounding coefficients. Finally, we incorporate projected and weighted bias-correction steps for hypothesis testing. Theoretically, we establish various effects' identification conditions and non-asymptotic error bounds. We show effective Type-I error control of asymptotic $z$-tests as sample and response sizes approach infinity. Numerical experiments demonstrate that the proposed method controls the false discovery rate by the Benjamini-Hochberg procedure and is more powerful than alternative methods. By comparing single-cell RNA-seq counts from two groups of samples, we demonstrate the suitability of adjusting confounding effects when significant covariates are absent from the model.
We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $l$ in an infinite heterogeneous correlated random medium, in a situation where the medium is only known in a box of diameter $L\gg l$ around the support of the charge. We show that the algorithm of Lu, Otto and Wang, suggesting optimal Dirichlet boundary conditions motivated by the multipole expansion of Bella, Giunti and Otto, still performs well in correlated media. With overwhelming probability, we obtain a convergence rate in terms of $l$, $L$ and the size of the correlations for which optimality is supported with numerical simulations. These estimates are provided for ensembles which satisfy a multi-scale logarithmic Sobolev inequality, where our main tool is an extension of the semi-group estimates established by the first author. As part of our strategy, we construct sub-linear second-order correctors in this correlated setting which is of independent interest.
We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow (PF) reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid quadratic memory allocation and computational cost while achieving realistic PF reconstruction. We show that hyperparameter tuning on a supercomputer significantly improves the physics performance of the models. We also demonstrate that the resulting model is highly portable across hardware processors, supporting Nvidia, AMD, and Intel Habana cards. Finally, we demonstrate that the model can be trained on highly granular inputs consisting of tracks and calorimeter hits, resulting in a competitive physics performance with the baseline. Datasets and software to reproduce the studies are published following the findable, accessible, interoperable, and reusable (FAIR) principles.
We introduce a novel ridge detection algorithm for time-frequency (TF) analysis, particularly tailored for intricate nonstationary time series encompassing multiple non-sinusoidal oscillatory components. The algorithm is rooted in the distinctive geometric patterns that emerge in the TF domain due to such non-sinusoidal oscillations. We term this method \textit{shape-adaptive mode decomposition-based multiple harmonic ridge detection} (\textsf{SAMD-MHRD}). A swift implementation is available when supplementary information is at hand. We demonstrate the practical utility of \textsf{SAMD-MHRD} through its application to a real-world challenge. We employ it to devise a cutting-edge walking activity detection algorithm, leveraging accelerometer signals from an inertial measurement unit across diverse body locations of a moving subject.
We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.
The spectral clustering algorithm is often used as a binary clustering method for unclassified data by applying the principal component analysis. To study theoretical properties of the algorithm, the assumption of homoscedasticity is often supposed in existing studies. However, this assumption is restrictive and often unrealistic in practice. Therefore, in this paper, we consider the allometric extension model, that is, the directions of the first eigenvectors of two covariance matrices and the direction of the difference of two mean vectors coincide, and we provide a non-asymptotic bound of the error probability of the spectral clustering algorithm for the allometric extension model. As a byproduct of the result, we obtain the consistency of the clustering method in high-dimensional settings.
Conventionally, piecewise polynomials have been used in the boundary elements method (BEM) to approximate unknown boundary values. Since infinitely smooth radial basis functions (RBFs) are more stable and accurate than the polynomials for high dimensional domains, the unknown values are approximated by the RBFs in this paper. Therefore, a new formulation of BEM, called radial BEM, is obtained. To calculate singular boundary integrals of the new method, we propose a new distribution for boundary source points that removes singularity from the integrals. Therefore, the boundary integrals are calculated precisely by the standard Gaussian quadrature rule (GQR) with n = 16 quadrature nodes. Several numerical examples are presented to check the efficiency of the radial BEM versus standard BEM and RBF collocation method for solving partial differential equations (PDEs). Analytical and numerical studies presented in this paper admit the radial BEM as a perfect version of BEM which will enrich the contribution of BEM and RBFs in solving PDEs, impressively.
It is crucial to detect when an instance lies downright too far from the training samples for the machine learning model to be trusted, a challenge known as out-of-distribution (OOD) detection. For neural networks, one approach to this task consists of learning a diversity of predictors that all can explain the training data. This information can be used to estimate the epistemic uncertainty at a given newly observed instance in terms of a measure of the disagreement of the predictions. Evaluation and certification of the ability of a method to detect OOD require specifying instances which are likely to occur in deployment yet on which no prediction is available. Focusing on regression tasks, we choose a simple yet insightful model for this OOD distribution and conduct an empirical evaluation of the ability of various methods to discriminate OOD samples from the data. Moreover, we exhibit evidence that a diversity of parameters may fail to translate to a diversity of predictors. Based on the choice of an OOD distribution, we propose a new way of estimating the entropy of a distribution on predictors based on nearest neighbors in function space. This leads to a variational objective which, combined with the family of distributions given by a generative neural network, systematically produces a diversity of predictors that provides a robust way to detect OOD samples.