In this paper, we study a distributed privacy-preserving learning problem in social networks with general topology. The agents can communicate with each other over the network, which may result in privacy disclosure, since the trustworthiness of the agents cannot be guaranteed. Given a set of options which yield unknown stochastic rewards, each agent is required to learn the best one, aiming at maximizing the resulting expected average cumulative reward. To serve the above goal, we propose a four-staged distributed algorithm which efficiently exploits the collaboration among the agents while preserving the local privacy for each of them. In particular, our algorithm proceeds iteratively, and in every round, each agent i) randomly perturbs its adoption for the privacy-preserving purpose, ii) disseminates the perturbed adoption over the social network in a nearly uniform manner through random walking, iii) selects an option by referring to the perturbed suggestions received from its peers, and iv) decides whether or not to adopt the selected option as preference according to its latest reward feedback. Through solid theoretical analysis, we quantify the trade-off among the number of agents (or communication overhead), privacy preserving and learning utility. We also perform extensive simulations to verify the efficacy of our proposed social learning algorithm.
The extensive-form game has been studied considerably in recent years. It can represent games with multiple decision points and incomplete information, and hence it is helpful in formulating games with uncertain inputs, such as poker. We consider an extended-form game with two players and zero-sum, i.e., the sum of their payoffs is always zero. In such games, the problem of finding the optimal strategy can be formulated as a bilinear saddle-point problem. This formulation grows huge depending on the size of the game, since it has variables representing the strategies at all decision points for each player. To solve such large-scale bilinear saddle-point problems, the excessive gap technique (EGT), a smoothing method, has been studied. This method generates a sequence of approximate solutions whose error is guaranteed to converge at $\mathcal{O}(1/k)$, where $k$ is the number of iterations. However, it has the disadvantage of having poor theoretical bounds on the error related to the game size. This makes it inapplicable to large games. Our goal is to improve the smoothing method for solving extensive-form games so that it can be applied to large-scale games. To this end, we make two contributions in this work. First, we slightly modify the strongly convex function used in the smoothing method in order to improve the theoretical bounds related to the game size. Second, we propose a heuristic called centering trick, which allows the smoothing method to be combined with other methods and consequently accelerates the convergence in practice. As a result, we combine EGT with CFR+, a state-of-the-art method for extensive-form games, to achieve good performance in games where conventional smoothing methods do not perform well. The proposed smoothing method is shown to have the potential to solve large games in practice.
Local Differential Privacy (LDP) is now widely adopted in large-scale systems to collect and analyze sensitive data while preserving users' privacy. However, almost all LDP protocols rely on a semi-trust model where users are curious-but-honest, which rarely holds in real-world scenarios. Recent works show poor estimation accuracy of many LDP protocols under malicious threat models. Although a few works have proposed some countermeasures to address these attacks, they all require prior knowledge of either the attacking pattern or the poison value distribution, which is impractical as they can be easily evaded by the attackers. In this paper, we adopt a general opportunistic-and-colluding threat model and propose a multi-group Differential Aggregation Protocol (DAP) to improve the accuracy of mean estimation under LDP. Different from all existing works that detect poison values on individual basis, DAP mitigates the overall impact of poison values on the estimated mean. It relies on a new probing mechanism EMF (i.e., Expectation-Maximization Filter) to estimate features of the attackers. In addition to EMF, DAP also consists of two EMF post-processing procedures (EMF* and CEMF*), and a group-wise mean aggregation scheme to optimize the final estimated mean to achieve the smallest variance. Extensive experimental results on both synthetic and real-world datasets demonstrate the superior performance of DAP over state-of-the-art solutions.
Federated Learning (FL) enables machine learning model training on distributed edge devices by aggregating local model updates rather than local data. However, privacy concerns arise as the FL server's access to local model updates can potentially reveal sensitive personal information by performing attacks like gradient inversion recovery. To address these concerns, privacy-preserving methods, such as Homomorphic Encryption (HE)-based approaches, have been proposed. Despite HE's post-quantum security advantages, its applications suffer from impractical overheads. In this paper, we present FedML-HE, the first practical system for efficient HE-based secure federated aggregation that provides a user/device-friendly deployment platform. FL-HE utilizes a novel universal overhead optimization scheme, significantly reducing both computation and communication overheads during deployment while providing customizable privacy guarantees. Our optimized system demonstrates considerable overhead reduction, particularly for large models (e.g., ~10x reduction for HE-federated training of ResNet-50 and ~40x reduction for BERT), demonstrating the potential for scalable HE-based FL deployment.
The growing demand for intelligent environments unleashes an extraordinary cycle of privacy-aware applications that makes individuals' life more comfortable and safe. Examples of these applications include pedestrian tracking systems in large areas. Although the ubiquity of camera-based systems, they are not a preferable solution due to the vulnerability of leaking the privacy of pedestrians.In this paper, we introduce a novel privacy-preserving system for pedestrian tracking in smart environments using multiple distributed LiDARs of non-overlapping views. The system is designed to leverage LiDAR devices to track pedestrians in partially covered areas due to practical constraints, e.g., occlusion or cost. Therefore, the system uses the point cloud captured by different LiDARs to extract discriminative features that are used to train a metric learning model for pedestrian matching purposes. To boost the system's robustness, we leverage a probabilistic approach to model and adapt the dynamic mobility patterns of individuals and thus connect their sub-trajectories.We deployed the system in a large-scale testbed with 70 colorless LiDARs and conducted three different experiments. The evaluation result at the entrance hall confirms the system's ability to accurately track the pedestrians with a 0.98 F-measure even with zero-covered areas. This result highlights the promise of the proposed system as the next generation of privacy-preserving tracking means in smart environments.
The dynamics of the power system are described by a system of differential-algebraic equations. Time-domain simulations are used to understand the evolution of the system dynamics. These simulations can be computationally expensive due to the stiffness of the system which requires the use of finely discretized time-steps. By increasing the allowable time-step size, we aim to accelerate such simulations. In this paper, we use the observation that even though the individual components are described using both algebraic and differential equations, their coupling only involves algebraic equations. Following this observation, we use Neural Networks (NNs) to approximate the components' state evolution, leading to fast, accurate, and numerically stable approximators, which enable larger time-steps. To account for effects of the network on the components and vice-versa, the NNs take the temporal evolution of the coupling algebraic variables as an input for their prediction. We initially estimate this temporal evolution and then update it in an iterative fashion using the Newton-Raphson algorithm. The involved Jacobian matrix is calculated with Automatic Differentiation and its size depends only on the network size but not on the component dynamics. We demonstrate this NN-based simulator on the IEEE 9-bus test case with 3 generators.
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of $\mathbb{R}$. An order-$1$ autoregressive model in this context is to be understood as a Markov chain, where one specifies a certain structure (regression) for the one-step conditional Fr\'echet mean with respect to a natural probability metric. We construct and explore different models based on iterated random function systems of optimal transport maps. While the properties and interpretation of these models depend on how they relate to the iterated transport system, they can all be analyzed theoretically in a unified way. We present such a theoretical analysis, including convergence rates, and illustrate our methodology using real and simulated data. Our approach generalises or extends certain existing models of transportation-based regression and autoregression, and in doing so also provides some additional insights on existing models.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
In recent years, mobile devices have gained increasingly development with stronger computation capability and larger storage. Some of the computation-intensive machine learning and deep learning tasks can now be run on mobile devices. To take advantage of the resources available on mobile devices and preserve users' privacy, the idea of mobile distributed machine learning is proposed. It uses local hardware resources and local data to solve machine learning sub-problems on mobile devices, and only uploads computation results instead of original data to contribute to the optimization of the global model. This architecture can not only relieve computation and storage burden on servers, but also protect the users' sensitive information. Another benefit is the bandwidth reduction, as various kinds of local data can now participate in the training process without being uploaded to the server. In this paper, we provide a comprehensive survey on recent studies of mobile distributed machine learning. We survey a number of widely-used mobile distributed machine learning methods. We also present an in-depth discussion on the challenges and future directions in this area. We believe that this survey can demonstrate a clear overview of mobile distributed machine learning and provide guidelines on applying mobile distributed machine learning to real applications.